

Copyright © 2013 Raritan, Inc.

PIQAPI-0I-v4.1-E

November 2013

255-80-6102-00-0I

Power IQ

WS-API Programming Guide
Release 4.1.0

This document contains proprietary information that is protected by copyright. All rights reserved. No
part of this document may be photocopied, reproduced, or translated into another language without
express prior written consent of Raritan, Inc.

© Copyright 2013 Raritan, Inc. All third-party software and hardware mentioned in this document are
registered trademarks or trademarks of and are the property of their respective holders.

FCC Information

This equipment has been tested and found to comply with the limits for a Class A digital device,
pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection
against harmful interference in a commercial installation. This equipment generates, uses, and can
radiate radio frequency energy and if not installed and used in accordance with the instructions, may
cause harmful interference to radio communications. Operation of this equipment in a residential
environment may cause harmful interference.

VCCI Information (Japan)

Raritan is not responsible for damage to this product resulting from accident, disaster, misuse, abuse,
non-Raritan modification of the product, or other events outside of Raritan's reasonable control or not
arising under normal operating conditions.

If a power cable is included with this product, it must be used exclusively for this product.

iii

Contents

Chapter 1 Introduction to the Power IQ API 4

Guidance for Customers Upgrading from Previous Releases ... 5
Guidance for PDU Readings in 4.0 and Later ... 7
Guidance for Line Readings in 4.0 and Later .. 10
Guidance for Monthly, Daily, and Hourly Rollups in 4.0 and Later 11

Deprecations .. 12

Chapter 2 REST API 13

Security .. 13
Requests .. 14
Responses ... 14
Testing ... 15
Functional Areas .. 16
API ... 16

Errors ... 17
Job Management ... 18
Event Management ... 20
Outlet Management ... 22
Data Center Hierarchy ... 28
Asset Strip Management ... 35
PDU Management ... 37
Power and sensor readings ... 49
Power Control .. 50
Misc ... 52

Addendum A: Resource Reference ... 53
Modules ... 54
Examples: .. 127

Addendum B: Route Reference ... 136
Addendum C: Searching Reference .. 143

Modifiers .. 145
Limiting and Ordering Search Results ... 146

Addendum D: Asynchronous Modes ... 146
Addendum E: Response Codes .. 146

Index 149

4

This section describes the Power IQ web services REST API.

The API is bi-directional: external applications can access and update
the information in Power IQ.

In short, the document describes:

 Example use cases of what can be done with this API

 A technical description of the API

 A functional description of the API including a list of API calls, and an
overview of the relevant objects and their fields

The word "PDU" in this document means "rack PDU". The concept "EDM
entity" includes PDUs, Devices, Racks, Data Centers etc. EDM is an
abbreviation of Enterprise Data Model.

Power IQ can be used:

 as a stand-alone application (without integration with an external
application)

 integrated with an external application using the API described in this
document

 a combination of both, because changes made in Power IQ will show
up in the external asset management application and vice versa

The REST API also contains bulk data commands for Enterprise Power
IQ. Please send an email to jamesc@raritan.com if you are interested in
Enterprise Power IQ API.

In This Chapter

Guidance for Customers Upgrading from Previous Releases 5
Deprecations ... 12

Chapter 1 Introduction to the Power IQ API

 Chapter 1: Introduction to the Power IQ API

5

Guidance for Customers Upgrading from Previous Releases

This section is intended to provide guidance to customers who use the
REST API and are planning to upgrade to Power IQ release 4.0 and
later.

In Power IQ 4.0, a couple of changes were made to the system and
REST API to provide granular data for the PDU inlets, better
performance, allow for power control, and to make it easier to get rollup
data.

 PDU Unit Level readings were replaced with more granular inlet level
readings. This allows Power IQ to support PDU’s with more than one
inlet

Chapter 1: Introduction to the Power IQ API

6

 A new inlet id field was added to lines and line readings so that users
can determine which lines and line readings are associated with
which inlets.

 Each of the rollup levels (monthly, daily and hourly) were given their
own routes such that users no longer have to specify query
parameters. The routes also provide better performance.

 New data points were exposed including voltage at the inlet pole
level.

 Power Control was added to the REST API.

As a result of these changes, the following routes are no longer
supported.

GET /api/v2/pdus/:pdu_id/readings

GET /api/v2/pdus/:pdu_id/readings_rollups

GET /api/v2/line_readings

GET /api/v2/line_readings_rollups

GET /api/v2/circuit_breaker_readings_rollups

GET /api/v2/outlet_readings_rollups

GET /api/v2/outlets/:outlet_id/readings_rollups

GET /api/v2/sensor_readings_rollups

GET /api/v2/sensors/:sensor_id/readings_rollups

For instructions on retrieving the equivalent data in 4.0, see:

 Guidance for PDU Readings in 4.0 (see "Guidance for PDU
Readings in 4.0 and Later" on page 7)

 Guidance for Line Readings in 4.0 (see "Guidance for Line
Readings in 4.0 and Later" on page 10)

 Guidance for Monthly, Daily, and Hourly Rollups in 4.0 (see
"Guidance for Monthly, Daily, and Hourly Rollups in 4.0 and
Later" on page 11)

 Chapter 1: Introduction to the Power IQ API

7

Guidance for PDU Readings in 4.0 and Later

In previous releases, customers could get PDU level data using one of
the following two routes. There was no way to retrieve inlet level data.

GET /api/v2/pdus/:pdu_id/readings [DEPRECATED]

GET /api/v2/pdus/:pdu_id/readings_rollups [DEPRECATED]

In R4.0, these routes were replaced with ones that expose inlet level
data. The new routes are as follows. Note that a new inlet id was added
to lines and line readings so that users can determine which lines and
line readings are associated with which inlets.

GET /api/v2/inlet_readings

GET /api/v2/inlet_readings_rollups/hourly

GET /api/v2/inlet_readings_rollups/daily

GET /api/v2/inlet_readings_rollups/monthly

To get the readings for a specific PDU, you can specify the pdu_id using
the searching parameters. For example, to retrieve values for a PDU with
pdu_id = 50, you would specify the following:

GET /api/v2/inlet_readings?pdu_id_eq=50

GET /api/v2/inlet_readings_rollups/hourly?pdu_id_eq=50

GET /api/v2/inlet_readings_rollups/daily?pdu_id_eq=50

GET /api/v2/inlet_readings_rollups/monthly?pdu_id_eq=50

If you query the inlet_readings for a PDU with three inlets, the response
would be similar to the following one. To get the total power for the PDU,
sum the three active_power values for each reading time. This value is
the same as the value previously returned as a PDU unit level reading.

 Example:

{

 "inlet_readings": [

 {

 "id": 584940,

 "pdu_id": 50,

 "inlet_id": 178,

 "reading_time": "2013/01/31 15:01:08 -0500",

 "voltage": 204.96,

 "min_voltage": null,

 "max_voltage": null,

 "current": 15.417,

 "min_current": null,

 "max_current": null,

 "unutilized_capacity": 16.583,

 "min_unutilized_capacity": null,

 "max_unutilized_capacity": null,

 "power_factor": null,

 "min_power_factor": null,

 "max_power_factor": null,

 "active_power": 3456,

 "min_active_power": null,

Chapter 1: Introduction to the Power IQ API

8

 "max_active_power": null,

 "apparent_power": 3617,

 "min_apparent_power": null,

 "max_apparent_power": null,

 "volt_amp_hour": null,

 "watt_hour": 16122800

 "inlet_ordinal": 3"

 },

 {

 "id": 584939,

 "pdu_id": 50,

 "inlet_id": 177,

 "reading_time": "2013/01/31 15:01:08 -0500",

 "voltage": 204.96,

 "min_voltage": null,

 "max_voltage": null,

 "current": 12.274,

 "min_current": null,

 "max_current": null,

 "unutilized_capacity": 19.726,

 "min_unutilized_capacity": null,

 "max_unutilized_capacity": null,

 "power_factor": null,

 "min_power_factor": null,

 "max_power_factor": null,

 "active_power": 3268,

 "min_active_power": null,

 "max_active_power": null,

 "apparent_power": 3352,

 "min_apparent_power": null,

 "max_apparent_power": null,

 "volt_amp_hour": null,

 "watt_hour": 14569100

 "inlet_ordinal": 2"

 },

 {

 "id": 584938,

 "pdu_id": 50,

 "inlet_id": 176,

 "reading_time": "2013/01/31 15:01:08 -0500",

 "voltage": 206.79,

 "min_voltage": null,

 "max_voltage": null,

 "current": 4.236,

 "min_current": null,

 "max_current": null,

 "unutilized_capacity": 27.764,

 "min_unutilized_capacity": null,

 "max_unutilized_capacity": null,

 "power_factor": null,

 "min_power_factor": null,

 "max_power_factor": null,

 Chapter 1: Introduction to the Power IQ API

9

 "active_power": 425,

 "min_active_power": null,

 "max_active_power": null,

 "apparent_power": 507,

 "min_apparent_power": null,

 "max_apparent_power": null,

 "volt_amp_hour": null,

 "watt_hour": 2520460

 "inlet_ordinal": 1"

 }

]

}

Chapter 1: Introduction to the Power IQ API

10

Guidance for Line Readings in 4.0 and Later

In previous releases, customers could get line level data that was
associated with the PDU as a whole using one of the following two
routes. There was no way to retrieve which lines, also known as poles,
were associated with which inlets in the case of a multi-inlet PDU.

GET /api/v2/line_readings [DEPRECATED]

GET /api/v2/line_readings_rollups [DEPRECATED]

In R4.0, these routes were replaced with ones that provide the
association between poles (lines) and their inlets. The new routes are as
follows. These provide the same type of information as the previous
line_readings calls, with the addition of a new inlet_id field so that users
can determine which poles (lines) and pole (line) readings are associated
with which inlets. The inlet_ordinal shows the inlet number relative to that
PDU, e.g. whether it’s the first, second, inlet and so on, on that PDU.
Most PDU’s will only have one inlet so the inlet_ordinal will be 1 on those
PDU’s.

GET /api/v2/inlet_pole_readings

GET /api/v2/inlet_pole_readings_rollups/hourly

GET /api/v2/inlet_pole_readings_rollups/daily

GET /api/v2/inlet_pole_readings_rollups/monthly

 Example of the returned data for inlet pole readings:

"inlet_pole_readings": [

 {

 "id": 754,

 "reading_time": "2002/03/27 08:30:52 +0000",

 "current": 0,

 "unutilized_capacity": 12,

 "pdu_id": 24,

 "max_current": null,

 "min_current": null,

 "inlet_pole_id": 26,

 "voltage": 124,

 "min_voltage": null,

 "max_voltage": null,

 "min_unutilized_capacity": null,

 "max_unutilized_capacity": null,

 "inlet_id": 16,

 "inlet_ordinal": 1,

 "inlet_pole_ordinal": 1

 }

]

To get the pole readings for a specific PDU, you can specify the pdu_id
using the searching parameters. For example, to retrieve values for a
PDU with pdu_id =50, you would specify the following:

 Chapter 1: Introduction to the Power IQ API

11

GET /api/v2/inlet_pole_readings?pdu_id_eq=50

GET /api/v2/inlet_pole_readings_rollups/hourly?pdu_id_eq=50

GET /api/v2/inlet_pole_readings_rollups/daily?pdu_id_eq=50

GET /api/v2/inlet_pole_readings_rollups/monthly?pdu_id_eq=50

If you want to find out all of the poles on an inlet and then retrieve the
readings, you would first call the inlets route and specify the inlet_id for
the inlet in question. For instance, if you wanted to find all of the poles
associated with inlet_id = 16, you would call:

GET /api/v2/inlet_poles?inlet_id_eq=16

Then, for each inlet pole “id” that’s returned, you would make a call to
inlet_pole_readings. There are two ways to do this.

Examples for a inlet_pole_id = 26:

GET /api/v2/inlet_pole_readings?inlet_pole_id_eq=26

GET /api/v2/inlet_poles/26/readings

Guidance for Monthly, Daily, and Hourly Rollups in 4.0 and Later

This section explains how to get rollup data for customers who currently
use one of the following routes:

GET /api/v2/circuit_breaker_readings_rollups [DEPRECATED]

GET /api/v2/line_readings_rollups [DEPRECATED]

GET /api/v2/outlet_readings_rollups [DEPRECATED]

GET /api/v2/outlets/:outlet_id/readings_rollups [DEPRECATED]

GET /api/v2/sensor_readings_rollups [DEPRECATED]

GET /api/v2/sensors/:sensor_id/readings_rollups [DEPRECATED]

Prior to R4.0, users could retrieve rollup data for outlet using one of the
following commands. These would return hourly, daily, or monthly
rollup data respectively.

GET /api/v2/outlet_readings_rollups? rollup_interval_eq=1 [DEPRECATED]

GET /api/v2/outlet_readings_rollups? rollup_interval_eq=2 [DEPRECATED]

GET /api/v2/outlet_readings_rollups? rollup_interval_eq=3 [DEPRECATED]

In R4.0, the new way to get the rollup data is with these commands.

GET /api/v2/outlet_readings_rollups/hourly

GET /api/v2/outlet_readings_rollups/daily

GET /api/v2/outlet_readings_rollups/monthly

To retrieve the data by outlet_id, the following options are available.

GET /api/v2/outlets/:outlet_id/readings_rollups/hourly

GET /api/v2/outlets/:outlet_id/readings_rollups/daily

GET /api/v2/outlets/:outlet_id/readings_rollups/monthly

GET /api/v2/outlet_readings_rollups/hourly?outlet_id_eq=:outlet_id

GET /api/v2/outlet_readings_rollups/daily?outlet_id_eq=:outlet_id

GET /api/v2/outlet_readings_rollups/monthly?outlet_id_eq=:outlet_id

Similar changes were made for rollups for circuit breakers, lines and
sensors. See Addendum B: Route Reference for a list of the available
routes.

Chapter 1: Introduction to the Power IQ API

12

Deprecations

The current response format for these deprecations is still supported, but
they will be removed in version 3.

 Many resources, including Pdu, Inlet, and Outlet, include a reading
attribute containing the latest reading data for that resource. This
attribute slows down the response. New readings, such as circuit or
panel inlet, will not be added to this hash. In the future, this attribute
will be removed from all resources. To get the latest reading, make a
request to the appropriate readings resource.

 The attribute_name attribute on the Sensor has been replaced by the
type attribute. Old values were in this form: "AIR_FLOW". New
values are in this form: "AirFlowSensor".

13

The Power IQ REST API consists of logical resources, and actions that
can be taken on them. A resource is a representation of the models that
are used to describe the Power IQ platform through the API. A
comprehensive list of available resources is provided in Addendum A:
Resource Reference (on page 53). For example, there is a resource
called pdu, and with it you can list all pdus, look at a single pdu, or make
changes to a pdu.

In This Chapter

Security .. 13
Requests.. 14
Responses ... 14
Testing ... 15
Functional Areas .. 16
API ... 16
Addendum A: Resource Reference ... 53
Addendum B: Route Reference .. 136
Addendum C: Searching Reference .. 143
Addendum D: Asynchronous Modes ... 146
Addendum E: Response Codes .. 146

Security

To access the API calls, your application needs to authenticate itself.
The REST API uses Basic Access Authentication (see
http://en.wikipedia.org/wiki/Basic_access_authentication). Every HTTP
request should include an extra request header with the Base64
encoded username and password. The API always uses HTTPS, so all
information is transmitted encrypted, including username and password.

For example, if your username is "admin" and your password is "raritan",
include in every HTTP request the following
("YWRtaW46cmFyaXRhbg==" is Base64 of "admin:raritan").

GET /api/v2/pdus

HTTP/1.1

Host: localhost

Authorization: Basic YWRtaW46cmFyaXRhbg==

Most programming languages and libraries provide built-in support for
Basic Access Authentication.

Chapter 2 REST API

Chapter 2: REST API

14

Requests

All request bodies must be in JSON format, when a request body is
required. Your client must set the Content-Type and Accept header of
the HTTP request to application/json regardless of whether the request
has body content or not, otherwise the request will not be completed
successfully.

See Addendum A: Resource Reference (on page 53) for details on the
JSON objects returned for the various available resources.

Always set the Content-Type header for requests to application/json.

Always set the Accept header for requests to application/json.

Some requests provide an option for synchronous and asynchronous
modes. In these situations, pay particular attention when choosing
synchronous mode over asynchronous. It is very possible that the
request may time out.

A request will timeout server-side after 600s in duration. Keep in mind
that individual HTTP client libraries may have lower request timeout
settings.

Responses

All responses from the Power IQ API will be in JSON format. Appropriate
HTTP response codes are also used to indicate the results of an action
on a resource.

See Addendum E: Response Codes (on page 146) below for details on
the value and meanings of various response codes.

Everything but the smallest responses are GZip encoded. Make sure
your client has support for GZip.

 Chapter 2: REST API

15

Testing

To test and explore the Power IQ REST API, it can be very helpful to use
FireFox with the RESTClient plugin.

 To set up FireFox with the RESTClient plugin:

1. Install the latest version of FireFox (http://www.getfirefox.net)

2. Install the REST Client FireFox plugin
(https://addons.mozilla.org/en-us/firefox/addon/)

3. Accept certificates

4. Open up the location of Power IQ in FireFox (not in the REST Client)

5. Permanently accept all certificates

6. Open up the REST Client plug-in in FireFox

7. Start FireFox

8. Select Tools > REST Client

9. Setup basic authentication

10. From the REST Client interface, select the Login button at the top

11. In the login dialog select Basic, and enter in the appropriate Login
and Password values

12. Select OK to dismiss the dialog box

13. Setup headers

14. From the REST Client interface, select the Add Request Header
button at the top

15. Set the Name field to Content-Type

16. Set the Value field to application/json

17. Select OK to apply

18. From the REST Client interface, select the Add Request Header
button at the top

19. Set the Name field to Accept

20. Set the Value field to application/json

21. Select OK to apply

22. Make your first request

23. From the REST Client interface, input the URL for your Power IQ
server to retrieve a listing of all PDUs: https://<server>/api/v2/pdus

24. In the Method drop-down, select GET

25. Select the Send button to make the request

Chapter 2: REST API

16

26. The panels at the bottom provide different views into the request and
response

Functional Areas

The Power IQ Restful API can be grouped into the following general
areas of functionality:

 Job Management (on page 18)

 Event Management (on page 20)

 Outlet Management (on page 22)

 Data Center Hierarchy (on page 28)

 Asset Strip Management (on page 35)

 PDU Management (on page 37)

 Power and sensor readings (on page 49)

 Power Control (on page 50)

 Misc (on page 52)

API

The resources and actions listed below constitute the Power IQ REST
API. Please observe the following general guidelines:

GET methods never require any content in the body of the request

Assume the request and response body for a given resource will be in
the JSON format as defined in Addendum A: Resource Reference (on
page 53) for that resource, unless otherwise noted

PUT, POST, and DELETE methods almost always require a JSON body
to be present in the request

If the async parameter is set to true on a request that supports it, the
response body will be a job resource

 Chapter 2: REST API

17

Errors

Power IQ uses standard HTTP response codes to indicate the success
or failure of an API request. For the most part, codes in the 2xx range
indicate success, codes in the 4xx range indicate an error in the provided
information, and codes in the 5xx range indicate an error within Power IQ.
For more details on these codes, see Addendum E: Response Codes
(on page 146).

In addition to HTTP response codes, Power IQ will usually include JSON
in the response body of the request to help detail the problem that
occurred.

Example:

 REQUEST

Content-Type: application/json

Accept: application/json; charset=utf-8

POST /api/v2/devices

{ "device" : { "parent" : { "data_center" : 1 } } }

 RESPONSE

Status Code: 400 Bad Request

Content-Type: application/json; charset=utf-8

{

 "error":"ActiveRecord::RecordInvalid",

 "messages":["Name can't be blank"]

}

The response code 400 informs the client that there was a problem with
the request. The JSON body response details the error that occurred. In
this case, the request was missing the name attribute for the device
resource.

Chapter 2: REST API

18

Job Management

Job resources are used to handle long running requests that either must
be, or can optionally be, executed asynchronously. An action on any
resource may return a job resource if it supports the async parameter.

 Route Reference:

GET /api/v2/jobs/:id

GET /api/v2/jobs/:job_id/messages

GET /api/v2/job_messages/:id

GET /api/v2/job_messages

GET /api/v2/jobs/:id

Returns a single job, specified by the id parameter below.

Parameters

id

required

The numerical ID of the desired job.

Example Values: 123

GET /api/v2/jobs/:job_id/messages

Returns all messages associated with the given job, specified by the
job_id parameter below. Job messages contained detailed information
about the invidual steps during the execution of a job, including detailed
error messages if an error exists.

Parameters

job_id

required

The numerical ID of the desired job that messages should
be retrieved for.

Example Values: 123

GET /api/v2/job_messages/:id

Returns a single job_message, specified by the id parameter below.

Parameters

id

required

The numerical ID of the desired job_message.

Example Values: 123

GET /api/v2/job_messages

Returns a list of all job_messages.

 Chapter 2: REST API

19

Parameters

*

searchable

This request supports searching. See Addendum C:
Searching Reference (on page 143) and Addendum A:
Resource Reference (on page 53) to see which fields
this resource can be searched on.

Chapter 2: REST API

20

Event Management

Events are typically traps collected by Power IQ from PDUs and put into
a normalized form, but some can also be created internally by Power IQ.

 Route Reference

GET /api/v2/events/:id

GET /api/v2/events

PUT /api/v2/events/clear_batch

PUT /api/v2/events/:id/clear

GET /api/v2/events/:id

Returns a single event, specified by the id parameter below.

Parameters

id

required

The numerical ID of the desired event.

Example Values: 123

GET /api/v2/events

Returns a listing of all events

Parameters

*

searchable

This request supports searching. See Addendum C:
Searching Reference (on page 143) and Addendum A:
Resource Reference (on page 53) to see which fields
this resource can be searched on.

PUT /api/v2/events/clear_batch

Clears a list of events in the system by event id, acknowledging receipt
of that event and allowing it to be pruned by the system.

 Request Body

{ "events" : [1, 2, 26] }

 Response Body

{"events":[

 {

 "id":1,

 "event_config_id":72,

 "source":2,

 "created_at":"2011/10/07 14:49:42 +0000",

 "pdu_id":20,

 Chapter 2: REST API

21

 "pdu_outlet_id":null,

 "pdu_circuitbreaker_id":null,

 "sensor_id":null,

 "trap_oid":null,

 "cleared_by":2,

 "cleared_at":"2011/10/25 17:47:18 +0000",

 "clearing_event_id":null,

 "clearing_user_id":1,

 "notification_status":6,

 "asset_strip_id":null,

 "rack_unit_id":null,

 "params":[]

 },

 {

 "id":2,

 "event_config_id":72,

 "source":2,

 "created_at":"2011/10/07 14:49:45 +0000",

 "pdu_id":23,

 "pdu_outlet_id":null,

 "pdu_circuitbreaker_id":null,

 "sensor_id":null,

 "trap_oid":null,

 "cleared_by":2,

 "cleared_at":"2011/10/25 17:47:18 +0000",

 "clearing_event_id":null,

 "clearing_user_id":1,

 "notification_status":6,

 "asset_strip_id":null,

 "rack_unit_id":null,

 "params":[]

 },

 {

 "id":26,

 "event_config_id":62,

 "source":2,

 "created_at":"2011/10/13 15:05:55 +0000",

 "pdu_id":22,

 "pdu_outlet_id":null,

 "pdu_circuitbreaker_id":null,

 "sensor_id":null,

 "trap_oid":null,

 "cleared_by":2,

 "cleared_at":"2011/10/25 17:47:18 +0000",

 "clearing_event_id":null,

 "clearing_user_id":1,

 "notification_status":6,

 "asset_strip_id":null,

 "rack_unit_id":null,

 "params":[

 {

 "key":"timestamp",

Chapter 2: REST API

22

 "value":"1318513900627"

 }

]

 }

]}

PUT /api/v2/events/:id/clear

Clears a single event in the system, acknowledging receipt of that event
and allowing it to be pruned by the system.

Parameters

id

required

The numerical ID of the event to be cleared.

Example Values: 123

Outlet Management

Outlets are components of a PDU and can be associated to a device
resource.

Route Reference

GET /api/v2/outlet_readings

GET /api/v2/outlet_readings_rollups [DEPRECATED]

GET /api/v2/outlet_readings_rollups/hourly

GET /api/v2/outlet_readings_rollups/daily

GET /api/v2/outlet_readings_rollups/monthly

GET /api/v2/outlets

GET /api/v2/outlets/:id

PUT /api/v2/outlets/:id

GET /api/v2/outlets/:outlet_id/readings

GET /api/v2/outlets/:outlet_id/readings_rollups [DEPRECATED]

GET /api/v2/outlets/:outlet_id/readings_rollups/hourly

GET /api/v2/outlets/:outlet_id/readings_rollups/daily

GET /api/v2/outlets/:outlet_id/readings_rollups/monthly

GET /api/v2/outlets/:outlet_id/events

 Chapter 2: REST API

23

POST /api/v2/outlets/power_control

PUT /api/v2/outlets/rename_batch

Chapter 2: REST API

24

GET /api/v2/outlets/:id

Returns a single outlet, specified by the id parameter below.

Parameters

id

required

The numerical ID of the desired outlet.

Example Values: 123

GET /api/v2/outlets

Returns a listing of all outlets

Parameters

*

searchable

This request supports searching. See Addendum C:
Searching Reference (on page 143) and Addendum A:
Resource Reference (on page 53) to see which fields
this resource can be searched on.

PUT /api/v2/outlets/:id

Update the outlet, specified by the id parameter below. This method can
be used to rename a single outlet and re-assign an outlet to a Device. To
rename multiple outlets use rename_batch.

Parameters

id

required

The numerical ID of the desired outlet.

Example Values: 123

 Request Body

{"outlet":{

 "outlet_name":"NewTestOutletLabel",

 "device_id":null,

}}

 Response Body

{"outlet":{

 "id":1,

 "outlet_id":1,

 "outlet_name":"NewTestOutletLabel",

 "device_id":null,

 "state":"ON",

 "pdu_id":15

}}

 Chapter 2: REST API

25

PUT /api/v2/outlets/rename_batch

Rename multiple outlets.

Parameters

async

asynchronous

This request supports synchronous and asynchronous
modes of operation.

Example Value(s): true

Valid Values: (false|true)

 EXAMPLE 1:

Note: The value for PUE is calculated from other columns in the

"pue_calculations" table. You cannot directly perform a GET on "PUE".

 Request

Content-Type: application/json

Accept: application/json; charset=utf-8

PUT /api/v2/outlets/rename_batch?async=false

{"outlets":[

 {"id": 1, "outlet_name": "label1"},

 {"id": 2, "outlet_name": "label2"},

 {"id": 3, "outlet_name": "label3"}

]}

 Response

{

 "outlets": [

 {

 "id": 26,

 "ordinal": 1,

 "outlet_name": "Monitor",

 "device_id": 385,

 "state": "ON",

 "pdu_id": 8,

 "rated_amps": 12,

 "pue_total": false,

 "pue_it": true,

 "outlet_id": 1

 },

 {

 "id": 33,

 "ordinal": 8,

 "outlet_name": "Laptop",

 "device_id": 229,

 "state": "ON",

Chapter 2: REST API

26

 "pdu_id": 8,

 "rated_amps": 12,

 "pue_total": false,

 "pue_it": true,

 "outlet_id": 8

 }

]

}

 EXAMPLE 2:

 Request

Content-Type: application/json

Accept: application/json; charset=utf-8

PUT /api/v2/outlets/rename_batch?async=true

{"outlets":[

 {"id": 1, "outlet_name": "label1"},

 {"id": 2, "outlet_name": "label2"},

 {"id": 3, "outlet_name": "label3"}

]}

 Response

Status: 200

Content-Type: application/json; charset=utf-8

{"job":{

 "id":1,

 "user_id":1,

 "status":"COMPLETED",

 "description":null,

 "start_time":"2011/10/07 14:54:32 +0000",

 "end_time":"2011/10/07 14:54:33 +0000",

 "has_errors":false,

 "percent_complete":1.0,

 "completed":true,

 "last_message":"outlet ID=3 renamed to label3",

 "error_count":0

}}

GET /api/v2/outlets/:outlet_id/events

Retrieve any events associated with the given outlet.

Parameters

outlet_id

required

The numerical ID of the desired outlet.

Example Values: 123

 Chapter 2: REST API

27

GET /api/v2/outlets/:outlet_id/readings

Retrieve latest readings associated with the given outlet.

Parameters

outlet_id

required

The numerical ID of the desired outlet.

Example Values: 123

GET /api/v2/outlets/:outlet_id/readings_rollups/:rollup_interval

Retrieve different intervals of historical rollup readings associated with
the given outlet.

Parameters

outlet_id

required

The numerical ID of the desired outlet.

Example Values: 123

rollup_interval

required

The time interval of historical rollup readings to retrieve.

Example Value: hourly

Valid Values: hourly | daily | monthly

Chapter 2: REST API

28

Data Center Hierarchy

The data center hierarchy in Power IQ is a tree data structure that
represents the resources associated with a typical data center. This
includes resources such as racks, rows, rooms, and IT devices. This
portion of the API provides access to those resources, as well as ways to
navigate the hierarchy.

Although PDUs are a part of the data center hierarchy, the API for PDUs
is significantly different than other data center resources, and is
documented in the PDU Management section.

 Route Reference

GET /api/v2/aisles

POST /api/v2/aisles

GET /api/v2/aisles/:id

PUT /api/v2/aisles/:id

DELETE /api/v2/aisles/:id

GET /api/v2/aisles/:id/parent

GET /api/v2/aisles/:id/children

GET /api/v2/aisles/:id/descendants

GET /api/v2/aisles/:id/siblings

PUT /api/v2/aisles/:id/move_to

GET /api/v2/data_centers

POST /api/v2/data_centers

GET /api/v2/data_centers/:id

PUT /api/v2/data_centers/:id

DELETE /api/v2/data_centers/:id

GET /api/v2/data_centers/:id/children

GET /api/v2/data_centers/:id/descendants

GET /api/v2/data_centers/:id/siblings

PUT /api/v2/data_centers/:id/move_to

GET /api/v2/devices

POST /api/v2/devices

GET /api/v2/devices/:id

PUT /api/v2/devices/:id

DELETE /api/v2/devices/:id

GET /api/v2/devices/:id/parent

GET /api/v2/devices/:id/siblings

PUT /api/v2/devices/:id/move_to

GET /api/v2/devices/:device_id/outlets

GET /api/v2/floors

POST /api/v2/floors

GET /api/v2/floors/:id

PUT /api/v2/floors/:id

DELETE /api/v2/floors/:id

GET /api/v2/floors/:id/parent

 Chapter 2: REST API

29

GET /api/v2/floors/:id/children

GET /api/v2/floors/:id/descendants

GET /api/v2/floors/:id/siblings

PUT /api/v2/floors/:id/move_to

GET /api/v2/racks

POST /api/v2/racks

GET /api/v2/racks/:id

PUT /api/v2/racks/:id

DELETE /api/v2/racks/:id

GET /api/v2/racks/:id/parent

GET /api/v2/racks/:id/children

GET /api/v2/racks/:id/descendants

GET /api/v2/racks/:id/siblings

PUT /api/v2/racks/:id/move_to

GET /api/v2/rooms

POST /api/v2/rooms

GET /api/v2/rooms/:id

PUT /api/v2/rooms/:id

DELETE /api/v2/rooms/:id

GET /api/v2/rooms/:id/parent

GET /api/v2/rooms/:id/children

GET /api/v2/rooms/:id/descendants

GET /api/v2/rooms/:id/siblings

PUT /api/v2/rooms/:id/move_to

GET /api/v2/rows

POST /api/v2/rows

GET /api/v2/rows/:id

PUT /api/v2/rows/:id

DELETE /api/v2/rows/:id

GET /api/v2/rows/:id/parent

GET /api/v2/rows/:id/children

GET /api/v2/rows/:id/descendants

GET /api/v2/rows/:id/siblings

PUT /api/v2/rows/:id/move_to

GET /api/v2/sensors

GET /api/v2/sensors/:id

GET /api/v2/sensors/:id/parent

GET /api/v2/sensors/:id/siblings

PUT /api/v2/sensors/:id/move_to

GET /api/v2/:resource/:id

Returns a single data center resource, specified by the id and resource
parameters below.

Parameters

id The numerical ID of the desired resource.

Chapter 2: REST API

30

required Example Values: 123

resource

required

The name of the data center resource.

Example Values: data_centers

Valid Values:
(aisles|data_centers|devices|floors|racks|rooms|row)

PUT /api/v2/:resource/:id

Update a data center resource, specified by the id and resource
parameters below.

Parameters

id

required

The numerical ID of the desired resource.

Example Values: 123

resource

required

The name of the data center resource.

Example Values: data_centers

Valid Values:
(aisles|data_centers|devices|floors|racks|rooms|rows)

DELETE /api/v2/:resource/:id

Delete a data center resource, specified by the id and resource
parameters below.

Deleting a data center resource deletes that resource and all its
descendants.

Parameters

id

required

The numerical ID of the desired resource.

Example Values: 123

resource

required

The name of the data center resource.

Example Values: data_centers

Valid Values:
(aisles|data_centers|devices|floors|racks|rooms|rows)

POST /api/v2/:resource

Create a new data center resource. The parent of the resource must be
specified, such that this resource is added to the correct place within the
data center hierarchy.

 Chapter 2: REST API

31

Parameters

resource

required

The name of the data center resource.

Example Values: data_center

Valid Values:
(aisles|data_centers|devices|floors|racks|rooms|rows)

 Request

Content-Type: application/json

Accept: application/json; charset=utf-8

POST /api/v2/rooms

{ "room" : {

 "name" : "Big Room",

 "external_key" : "AAFF",

 "parent" : {

 "data_center" : {

 "id" :2

 }

 }

} }

 Response

Status: 200

Content-Type: application/json; charset=utf-8

{"room":{

 "id":2,

 "name":"Big Room",

 "external_key":"AAFF",

 "capacity":null

}}

GET /api/v2/:resource

Returns all of the specified data center resources, specified by the
resource parameter.

Parameters

resource

required

searchable

The name of the data center resource.

Example Values: data_centers

Valid Values:
(aisles|data_centers|devices|floors|racks|rooms|rows)

Chapter 2: REST API

32

GET /api/v2/:resource/:id/parent

Return the parent of the data center resource, specified by the resource
and id parameters. Data_centers do not have parent.

Parameters

id

required

The numerical ID of the desired resource.

Example Values: 123

resource

required

The name of the data center resource.

Example Values: aisles

Valid Values: (aisles|floors|racks|rooms|rows|sensors)

Data centers have no parent, so data_centers is not a valid option for the
resource parameter.

GET /api/v2/:resource/:id/children

Return all the children of the data center resource, specified by the
resource and id parameters.

Parameters

id

required

The numerical ID of the desired resource.

Example Values: 123

resource

required

The name of the data center resource.

Example Values: data_centers

Valid Values:
(aisles|data_centers|floors|racks|rooms|rows)

Devices have no children, so device is not a valid option for the resource
parameter.

GET /api/v2/:resource/:id/descendants

Return all the descendants of the data center resource, specified by the
resource and id parameters.

Parameters

id

required

The numerical ID of the desired resource.

Example Values: 123

 Chapter 2: REST API

33

resource

required

The name of the data center resource.

Example Values: data_centers

Valid Values:
(aisles|data_centers|floors|racks|rooms|rows)

Devices and sensors have no descendants, so device and sensor are
not valid options for the resource parameter.

GET /api/v2/:resource/:id/siblings

Return all the siblings of the data center resource, specified by the
resource and id parameters.

Parameters

id

required

The numerical ID of the desired resource.

Example Values: 123

resource

required

The name of the data center resource.

Example Values: data_centers

Valid Values:
(aisles|data_centers|devices|floors|racks|rooms|rows)

PUT /api/v2/:resource/:id/move_to

Move the data center resource to another location, specified by the
resource and id parameters. The body of the request must include the
location to which the resource should be moved.

Parameters

id

required

The numerical ID of the desired resource.

Example Values: 123

resource

required

The name of the data center resource.

Example Values: data_centers

Valid Values:
(aisles|data_centers|devices|floors|racks|rooms|rows|sens
ors)

 Request

Content-Type: application/json

Accept: application/json; charset=utf-8

PUT /api/v2/rooms/2/move_to

Chapter 2: REST API

34

{ "data_center" : { "id" : 2 } }

GET /api/v2/device/:device_id/outlets

Retrieve the outlets associated with the device.

Parameters

device_id

required

The numerical ID of the desired device.

Example Values: 123

 Chapter 2: REST API

35

Asset Strip Management

Asset strips and rack units represent EMX asset strips and the individual
LEDS on the asset strip, respectively.

 Route Reference

GET /api/v2/asset_strips

GET /api/v2/asset_strips/:id

PUT /api/v2/asset_strips/:id

GET /api/v2/asset_strips/:asset_strip_id/rack_units

GET /api/v2/rack_units

GET /api/v2/rack_units/:id

PUT /api/v2/rack_units/:id

GET /api/v2/rack_units/:id/blade_slots

GET /api/v2/blade_slots

GET /api/v2/blade_slots/:id

GET /api/v2/asset_strips/:id

Returns a single asset_strip resource, specified by the id parameter
below. An asset_strip resource has a collection of rack_units that
represent the LED’s attached to it.

Parameters

id

required

The numerical ID of the desired asset_strip.

Example Values: 123

PUT /api/v2/asset_strips/:id

Update a asset_strip resource, specified by the id parameter below.

Parameters

id

required

The numerical ID of the desired asset_strip.

Example Values: 123

GET /api/v2/asset_strips/:asset_strip_id/rack_units

Return a listing of all LEDs (rack_units) associated with the
asset_strip_id specified in the parameter listing below.

Parameters

asset_strip_id The numerical ID of the desired asset_strip.

Chapter 2: REST API

36

required Example Values: 123

GET /api/v2/asset_strips

Returns all asset_strip resources.

Parameters

*

searchable

This request supports searching. See Addendum C:
Searching Reference and Addendum A: Resource
Reference to see which fields this resource can be
searched on.

GET /api/v2/rack_units/:id

Returns a single rack_unit resource, specified by the id parameter below.
A rack_unit represents an individual LED on an asset_strip resource.

Parameters

id

required

The numerical ID of the desired rack_unit.

Example Values: 123

PUT /api/v2/rack_units/:id

Updates a single rack_unit resource, specified by the id parameter
below.

Parameters

id

required

The numerical ID of the desired rack_unit.

Example Values: 123

GET /api/v2/rack_units

Returns all rack_units resources.

Parameters

*

searchable

This request supports searching. See Addendum C:
Searching Reference (on page 143) and Addendum A:
Resource Reference (on page 53) to see which fields
this resource can be searched on.

GET /api/v2/rack_units/:id/blade_slots

Returns all blade slots attached to the rack unit defined by that id.

 Chapter 2: REST API

37

Parameters

id

required

The numerical ID of the desired rack_unit.

Example Values: 123

GET /api/v2/blade_slots

Returns ALL blade slots resources.

Parameters

*

searchable

This request supports searching. See Addendum C:
Searching Reference and Addendum A: Resource
Reference to see which fields this resource can be
searched on.

GET /api/v2/blade_slots/:id

Returns a single blade_slot resource, specified by the id parameter

id

required

The numerical ID of the desired blade_slot.

Example Values: 123

PDU Management

A PDU resource is central to most aspects of the Power IQ API.
Although PDUs participate in the data center hierarchy, they have many
unique operations that set them apart from other data center resources.

 Route Reference

POST /api/v2/pdus/create_batch

DELETE /api/v2/pdus/destroy_batch

GET /api/v2/pdus

POST /api/v2/pdus

GET /api/v2/pdus/:id

PUT /api/v2/pdus/:id

DELETE /api/v2/pdus/:id

GET /api/v2/pdus/:id/inlets

PUT /api/v2/pdus/:id/move_to

PUT /api/v2/pdus/:id/rescan

GET /api/v2/pdus/:pdu_id/asset_strips

Chapter 2: REST API

38

GET /api/v2/pdus/:pdu_id/events

GET /api/v2/pdus/:pdu_id/outlets

GET /api/v2/pdus/:pdu_id/sensors

GET /api/v2/pdus/:pdu_id/circuits

GET /api/v2/pdus/:pdu_id/circuit_poles

GET /api/v2/pdus/:pdu_id/panels

 Chapter 2: REST API

39

GET /api/v2/pdus

Returns all pdu resources.

Parameters

*

searchable

This request supports searching. See Addendum C:
Searching Reference (on page 143) and Addendum A:
Resource Reference (on page 53) to see which fields
this resource can be searched on.

POST /api/v2/pdus

Create a pdu resource.

A pdu creation request should contain the IP Address, proxy index (if
needed), and the access information. For Raritan PDUs this would
include the userid and password required for upgrades. SNMPv1 or
SNMPv2 will require an appropriate community string while SNMPv3 is
much more complex.

 Valid fields:

ip_address -- The IP Address of the PDU

ipmi_username -- The username of the user used to log into the Web UI
of the PDU if it is a Raritan PDU

ipmi_password -- The password of the user used to log into the Web UI
of the PDU if it is a Raritan PDU

proxy_index -- The identifying index of a PDU that is under the control of
a central system. The central system would have one IP address and
each PDU would have a proxy indice.

snmp3_enabled -- "true" or "false", indicates if SNMPv3 is enabled or
not.

snmp_community_string -- The SNMP v1 and v2 write community string
used by PowerIQ to get and set data on the PDU.

snmp3_user -- The SNMPv3 user

snmp3_auth_level -- The SNMP v3 authorization level: "noAuthNoPriv",
"authNoPriv" or "authPriv"

snmp3_auth_passkey -- The SNMPv3 authorization passkey

snmp3_auth_protocol -- The SNMPv3 authorization protocol: "MD5" or
"SHA"

snmp3_priv_passkey -- The SNMPv3 privacy passkey

snmp3_priv_protocol -- The SNMPv3 privacy protocol: "DES" or "AES"

Chapter 2: REST API

40

 Request Body

For a Raritan PDU:

POST /api/v2/pdus

{ "pdu" : { "ip_address" : "192.168.1.1",

"ipmi_username" : "admin-user", "ipmi_password" :

"password", "snmp3_enabled" : "false",

"snmp_community_string" : "private"} }

For a non-Raritan PDU:

POST /api/v2/pdus

{ "pdu" : { "ip_address" : "192.168.1.1",

"snmp3_enabled" : "false", "snmp_community_string" :

"private"} }

For a PDU with a proxy controller:

POST /api/v2/pdus

{ "pdu" : { "ip_address" : "192.168.1.1",

"proxy_index" : "1", "snmp3_enabled" : "false",

"snmp_community_string" : "private"} }

 Response Body

Successful response:

{

 "pdu" :

 {

 "id":1,

 "snmp3_enabled":false,

 "snmp3_user":null,

 "snmp3_auth_level":null,

 "caption":"PX-3370",

 "description":"Raritan Dominion PX - Firmware Version

010500-10315",

 "contact":"Test Lab",

 "proxy_index":null,

 "requires_manual_voltage":null,

 "configured_inlet_voltage":null,

 "configured_outlet_voltage":null,

 "supports_single_sign_on":true,

 "supports_firmware_upgrades":true,

 "supports_bulk_configuration":true,

 "supports_outlet_power_control":true,

 "supports_outlet_renaming":true,

 "name":"PX-3370",

 "model":"PX-3370",

 "location":"Test Lab",

 "serial_number":"PTI0390259",

 "manufacturer":"Raritan",

 Chapter 2: REST API

41

 "firmware_version":"1.5.0-10315",

"poller_plugin":"com.raritan.polaris.plugins.pdu.ra

ritan.PduPoller",

 "rated_volts":"400V",

 "rated_amps":"32.00A",

 "rated_va":"22.0kVA",

 "ip_address":"192.168.1.1",

 "inline_meter":true,

 "supports_readingsonly_poll":false,

 "supports_data_logging":true,

 "supports_sensor_renaming":true,

 "default_connected_led_color":null,

 "default_disconnected_led_color":null,

 "dynamic_plugin_name":null,

 "phase":"UNKNOWN",

 "user_defined_phase":false,

 "custom_field_1":null,

 "custom_field_2":null,

 "external_key":"192.168.1.1",

"reading": {

 "inlet_readings": [

 {

 "inlet_id": 7,

 "volt_amp_hour": null,

 "min_unutilized_capacity": null,

 "max_power_factor": null,

 "min_apparent_power": null,

 "voltage": 120,

 "active_power": 98,

 "min_voltage": null,

 "pdu_id": 16,

 "max_current": null,

 "current": 1.193,

 "min_current": null,

 "max_apparent_power": null,

 "unutilized_capacity": 10.807,

 "watt_hour": null,

 "power_factor": 0.705036,

 "id": 14549,

 "max_unutilized_capacity": null,

 "max_voltage": null,

 "min_power_factor": null,

 "max_active_power": null,

 "apparent_power": 139,

 "reading_time": "2012/09/11 14:12:58 -0400",

 "min_active_power": null

 }

],

 "inlet_pole_readings": [

 {

 "id": 21833,

Chapter 2: REST API

42

 "current": 1.193,

 "pdu_id": 16,

 "voltage": 120,

 "reading_time": "2012/09/11 14:12:58 -0400",

 "min_current": null,

 "unutilized_capacity": 10.807,

 "inlet_pole_id": 7,

 "max_unutilized_capacity": null,

 "min_voltage": null,

 "max_current": null,

 "max_voltage": null,

 "min_unutilized_capacity": null

 }

],

 "circuit_breaker_readings": [

]

}

 },

 "health":

 {

 "overall":"Good",

 "connectivity":"OK",

 "connectivity_explanation":"Most recent poll of

the target PDU was successful.",

 "events":"Good",

 "active_events_count":0

 }

 }

}

Error response:

{

 "error":"Job::JobError",

 "messages":

 [

 "Job(ID:91) with 2 error(s) and status COMPLETED

completed",

 "Queuing PDU 192.168.1.1 for discovery",

 "Beginning discovery for PDU 192.168.1.1 ",

 "Discovering PDU 192.168.1.1 and could not retrieve

SystemObjectID",

 "PDU 192.168.1.1 could not be discovered. Failure

code: NoPlugin",

 "PDU 192.168.1.1 could not be discovered. There will

be no poll."

],

 "job":

 {

 "description":null,

 Chapter 2: REST API

43

 "end_time":"2011/10/24 17:29:16 -0400",

 "has_errors":true,

 "id":91,

 "start_time":"2011/10/24 17:28:55 -0400",

 "status":"COMPLETED",

 "user_id":1

 },

 "trace":"Data here will be valuable only to Raritan

Tech support."

}

GET /api/v2/pdus/:id

Retrieve a single pdu resource, specified by the id parameter below.

Parameters

id

required

The numerical ID of the desired pdu.

Example Values: 123

PUT /api/v2/pdus/:id

Update a single pdu resource, specified by the id parameter below.

Parameters

id

required

The numerical ID of the desired pdu.

Example Values: 123

DELETE /api/v2/pdus/:id

Delete a single pdu resource, specified by the id parameter below.

Once a PDU is removed, it’s readings are permanently lost and
cannot be recovered.

Parameters

id

required

The numerical ID of the desired pdu.

Example Values: 123

GET /api/v2/pdus/:id/inlets

Retrieve all inlets associated with the PDU resource specified by the id
parameter below.

Chapter 2: REST API

44

Parameters

id

required

The numerical ID of the desired pdu.

Example Values: 123

PUT /api/v2/pdus/:id/rescan

Rescan a single pdu resource, specified by the id parameter below.
PDUs are remotely managed devices polled based on the settings in
Power IQ. By requesting a rescan of a PDU, that device will be
scheduled for immediate polling, providing the latest data for that PDU.

Parameters

id

required

The numerical ID of the desired pdu.

Example Values: 123

PUT /api/v2/pdus/:id/move_to

Move the pdu resource to another location, specified by the id parameter.
The body of the request must include the location to which the pdu
should be moved too.

Parameters

id

required

The numerical ID of the desired pdu that should be
moved.

Example Values: 123

 Request Body

{"rack":{"id":"1"}}

POST /api/v2/pdus/create_batch

Creates multiple pdu resources. This is always done in an
asynchronous manner, so a search must be done to find the PDU once
the job has completed. One may use the job api to gather information
about the job id returned. In the sample below we combine the
examples from the single create method and have one request for
creating a batch of PDUs.

 Request Body

POST /api/v2/pdus/create_batch

 Chapter 2: REST API

45

{ "pdus" : [{ "ip_address" : "192.168.1.1",

"ipmi_username" : "admin-user", "ipmi_password" :

"password", "snmp3_enabled" : "false",

"snmp_community_string" : "private"},{ "ip_address" :

"192.168.1.2", "snmp3_enabled" : "false",

"snmp_community_string" : "private"}, { "ip_address" :

"192.168.1.3", "proxy_index" : "1", "snmp3_enabled" :

"false", "snmp_community_string" : "private"}] }

 Response Body

{"job":{"id":94,"user_id":1,"status":"ACTIVE","desc

ription":null,"start_time":"2011/10/25 11:48:08

-0400","end_time":null,"has_errors":false,"percent_

complete":0.0,"completed":false,"last_message":"Que

uing PDU 192.168.1.1 for discovery","error_count":0}}

DELETE /api/v2/pdus/destroy_batch

Destroy multiple pdu resources. This is done based on ID.

 Request Body

{"pdus":["1","2","3"]}

 Response Body

{}

GET /api/v2/pdus/:id/sensors

Retrieve all sensors associated with the pdu resource specified by the id
parameter below.

Parameters

id

required

The numerical ID of the desired pdu.

Example Values: 123

GET /api/v2/pdus/:id/outlets

Retrieve all outlets associated with the pdu resource specified by the id
parameter below.

Parameters

id

required

The numerical ID of the desired pdu.

Example Values: 123

Chapter 2: REST API

46

GET /api/v2/pdus/:id/asset_strips

Retrieve all asset_strips associated with the pdu resource specified by
the id parameter below.

Parameters

id

required

The numerical ID of the desired pdu.

Example Values: 123

GET /api/v2/pdus/:pdu_id/circuits

Retrieve all circuits associated with the pdu resource specified by the id
parameter below.

Parameters

id

required

The numerical ID of the desired pdu.

Example Values: 123

GET /api/v2/pdus/:pdu_id/circuit_poles

Retrieve all circuit_poles associated with the pdu resource specified by
the id parameter below.

Parameters

id

required

The numerical ID of the desired pdu.

Example Values: 123

GET /api/v2/pdus/:pdu_id/panels

Retrieve all panels associated with the pdu resource specified by the id
parameter below.

Parameters

id

required

The numerical ID of the desired pdu.

Example Values: 123

GET /api/v2/pdus/:id/events

Retrieve all events associated with the pdu resource specified by the id
parameter below.

 Chapter 2: REST API

47

Parameters

id

required

The numerical ID of the desired pdu.

Example Values: 123

POST /api/v2/pdus/update_ip_addresses

Update IP addresses of PDUs in Power IQ without having to delete and
re-add them. Send a mapping of old IPs to new IPs. IPs are updated in
the database. Any proxy indexes are left the same. Poller is restarted.
See POST /api/v2/pdus/update_ip_addresses - Notes and Errors (on
page 48) for more details.

 Request Body

{ "ip_addresses": [

 { "old_ip_address": "192.168.43.42",

"new_ip_address": "10.128.1.1" },

 { "old_ip_address": "192.168.47.19",

"new_ip_address": "10.128.1.2" }

]}

 Response Body

The response body is an array of updated PDUs.

{ "pdus": [{

 id: 1,

 ip_address: "10.128.1.1",

 ...

},{

 id: 2,

 ip_address: "10.128.1.2",

 ...

}]}

Chapter 2: REST API

48

POST /api/v2/pdus/update_ip_addresses - Notes and Errors

 Error Response

In the case of an error, you'll receive an HTTP 400 with the following
content, with sample error messages:

{

 "error": "Api::AddressChangeError",

 "messages": [

 "Destination IP Address 10.128.31.2 already exists in

system.",

 "Source IP Address 10.128.31.1 does not exist in system.",

 "Destination IP Address 10.128.44.2 already exists in

system.",

 "Source IP Address 10.128.44.1 does not exist in system."

],

 "trace":

"/opt/raritan/polaris/sync/poweriq_web/app/controllers/a

pi/v2/pdus_controller.rb:127:in ̀ update_ip_addresses'..."

}

 Possible errors:

 Source IP address does not exist in system.

 Destination IP address already exists in system.

 Source IP address is duplicated in uploaded data.

 Destination IP address is duplicated in uploaded data.

 Source IP Address is not a valid IPv4 or IPv6 source address.

 Destination IP Address is not a valid IPv4 or IPv6 destination
address.

 Notes

 Since proxied PDUs will use the same IP address, but different proxy
indexes, you may receive more PDUs in the response than IP
addresses POSTed in the request.

 You can't change an IP address to another existing IP address within
the same request. For example, you can't change A -> B and C -> A
in the same request. You must issue one request for A -> B and,
after success, issue another request for C -> A.

 On loaded Power IQ systems, it may take some time for the poller to
restart. Make sure you handle timeouts gracefully.

 Chapter 2: REST API

49

Power and sensor readings

Readings are powerful metrics collected by Power IQ. In the Power IQ
web UI, readings are the foundation used to generate the graphs and
charts. Readings for a given resource are typically spread across several
tables:

 readings - Raw readings derived directly from devices. Data is
periodically purged from this table.

 readings_rollups/hourly - Data from the readings table is rolled up
into this table at hourly intervals.

 readings_rollups/daily - Data from the readings table is rolled up into
this table at daily intervals.

 readings_rollups/monthly - Data from the readings table is rolled up
into this table at monthly intervals.

As a convenience, in some cases a resource provides a shortcut method
for returning readings. For example, the outlet resource:

GET /api/v2/outlets/:outlet_id/readings

GET

/api/v2/outlets/:outlet_id/readings_rollups/hourly

GET

/api/v2/outlets/:outlet_id/readings_rollups/daily

GET

/api/v2/outlets/:outlet_id/readings_rollups/monthly

These methods return the same results as these:

GET /api/v2/outlet_readings

GET /api/v2/outlet_readings_rollups/hourly

GET /api/v2/outlet_readings_rollups/daily

GET /api/v2/outlet_readings_rollups/monthly

However, in the first case, the readings that are returned are only for the
outlet specified by the outlet_id parameter. In the latter case, readings for
multiple outlets are returned.

 Route Reference

GET /api/v2/sensor_readings

GET /api/v2/sensor_readings_rollups

GET /api/v2/sensor_readings_rollups/hourly

GET /api/v2/sensor_readings_rollups/daily

GET /api/v2/sensor_readings_rollups/monthly

GET /api/v2/sensors

GET /api/v2/sensors/:id

GET /api/v2/sensors/:sensor_id/events

GET /api/v2/sensors/:sensor_id/readings

GET /api/v2/sensors/:sensor_id/readings_rollups [DEPRECATED]

GET /api/v2/sensors/:sensor_id/readings_rollups/hourly

GET /api/v2/sensors/:sensor_id/readings_rollups/daily

GET /api/v2/sensors/:sensor_id/readings_rollups/monthly

GET /api/v2/outlet_readings

Chapter 2: REST API

50

GET /api/v2/outlet_readings_rollups [DEPRECATED]

GET /api/v2/outlet_readings_rollups/hourly

GET /api/v2/outlet_readings_rollups/daily

GET /api/v2/outlet_readings_rollups/monthly

GET /api/v2/circuit_breaker_readings

GET /api/v2/circuit_breaker_readings_rollups/ [DEPRECATED]

GET /api/v2/circuit_breaker_readings_rollups/hourly

GET /api/v2/circuit_breaker_readings_rollups/daily

GET /api/v2/circuit_breaker_readings_rollups/monthly

GET /api/v2/inlet_readings

GET /api/v2/inlet_readings_rollups/hourly

GET /api/v2/inlet_readings_rollups/daily

GET /api/v2/inlet_readings_rollups/monthly

GET /api/v2/inlet_pole_readings

GET /api/v2/inlet_pole_readings_rollups/hourly

GET /api/v2/inlet_pole_readings_rollups/daily

GET /api/v2/inlet_pole_readings_rollups/monthly

Power Control

You can perform power control using the REST API.

Power control is supported for the following operations:

 Power control of EDM entities, such as racks

 EDM entities not supported: data centers and floors

 Chapter 2: REST API

51

 Device groups

 Outlets

 Route Reference

device groups

POST /api/v2/device_groups/power_control

outlets

POST /api/v2/outlets/power_control

EDM entities

POST /api/v2/rooms/:id/power_control

POST /api/v2/rows/:id/power_control

POST /api/v2/aisles/:id/power_control

POST /api/v2/racks/:id/power_control

POST /api/v2/devices/:id/power_control

The following routes return a 400 Bad Request with an error message,
rather than a 404 Not Found. Power control to data centers and floors is
not supported:

POST /api/v2/data_centers/:id/power_control

POST /api/v2/floors/:id/power_control

 Request

Specify the power control operation in the request body:

 POST /api/v2/device_groups/power_control

 {

 "state": "ON", // or "OFF" or "CYCLE", depending on what

the resource supports

 // ...

 }

For outlets and device groups, specify the EDM entity IDs as part of the
request body:

 # outlets

 POST /api/v2/outlets/power_control

 {

 "state": "ON",

 "outlets": [1, 2, 3]

 }

Chapter 2: REST API

52

 # device groups

 POST /api/v2/device_groups/power_control

 {

 "state": "ON",

 "device_groups": [1, 2, 3]

 }

Power control on EDM entities is supported for a single entity at a time,
so rather than specifying the entity IDs in the request body, it's part of the
URL. In this case, the power control operation is still part of the request
body:

 # power control on rack-3

 POST /api/v2/racks/3/power_control

 Response

All of these operations return a job on success or an error message on
failure.

 Permissions:

The API respects all the same administrative settings and permissions
as in the Power IQ web client.

 Global power control

 (EDM node) power control

 Per-node permissions

 Graceful shutdown

Misc

These are additional resources and actions that don’t fit inside the other
functional areas.

 Route Reference

GET /api/v2/system_info

GET /api/v2/system_info

Returns configuration information regarding the Power IQ system,
including version number, poller settings, and more. There is no way to
write system configuration information through the API. The Power IQ
user interface must be used to configure the system.

 Chapter 2: REST API

53

Addendum A: Resource Reference

The following tables provide information on all resources available in
Power IQ, with contextual information needed to understand how these
resources can and cannot be used in the API. For details on actions that
can be performed on these resources, and when these resources should
be used in a request or when it appears in a response, see the API
section of this document.

Chapter 2: REST API

54

Modules

 Aisle (on page 55)

 AssetStrip (on page 56)

 Blade_Slot (on page 58)

 Circuit (on page 60)

 CircuitBreakerReadings (on page 70)

 CircuitBreakerReadings*Rollup (on page 71)

 Configuration (on page 73)

 DataCenter (on page 79)

 Device (on page 82)

 Device Groups (on page 84)

 Event (on page 85)

 Floor (on page 88)

 Inlet (on page 89)

 Inlet Pole (on page 91)

 InletPoleReading (on page 92)

 InletPoleReading*Rollup (on page 95)

 InletReading (on page 98)

 InletReading*Rollup (on page 101)

 Job (on page 105)

 JobMessage (on page 107)

 Licensing (on page 108)

 Outlet (on page 109)

 OutletReadings (on page 111)

 OutletReadings*Rollup (on page 115)

 Pdu (on page 119)

 Rack (on page 124)

 RackUnit (on page 125)

 Room (on page 127)

 Row (on page 128)

 Sensor (on page 129)

 SensorReadings (on page 131)

 SensorReadings*Rollups (on page 132)

 SystemInfo (on page 134)

 Chapter 2: REST API

55

Aisle

Physical aisle of a data center. Part of the data center hierarchy that can
be used to model your site.

 Example:

{"aisle" : {

 "id" : 2,

 "name" :"Aisle 2",

 "external_key" :"Aisle -- 2",

 "capacity" :1.0

 }}

Attribute Details

 capacity

User-defined power capacity in kW

 Type: Double

 Sample Values: 1.0

 external_key

A code used to uniquely identify this resource

 Type: String

 id (readonly)

An automatically generated ID for this resource

 Type: Integer

 name

The name of the resource

 Type: String

Chapter 2: REST API

56

AssetStrip

Asset management strips attached to PDUs or EMXs that are being
managed by Power IQ.

Note: An EMX is treated the same as a PDU.

{"asset_strip":{

 "id":1,

 "pdu_id":27,

 "name":"Strip of Bacon",

 "state":"available",

 "created_at":"2011/10/07 14:50:01 +0000",

 "updated_at":"2011/10/07 14:50:01 +0000",

 "ordinal":1,

 "default_connected_led_color":"ff0000",

 "default_disconnected_led_color":"0000ff" }}

Attribute Details

 created_at (readonly)

The date and time this resource was created.

Note: The timezone for all date and time fields is always UTC (+0000),
which reports the time on the Power IQ, not the time of your client. Time
granularity is returned in seconds but internally stored to the usec. Be

aware of this when performing searches against particular times.

 Type: String

 Sample Values: "2011/10/07 14:50:00 +0000"

 default_connected_led_color

The color of a RackUnit LED connected to the AssetStrip, in
hexadecimal RGB.

 Type: String

 Sample Values: "FF0000"

 default_disconnected_led_color

The color of a RackUnit LED disconnected from the AssetStrip, in
hexadecimal RGB.

 Type: String

 Sample Values: "CECECE"

 Chapter 2: REST API

57

 id (readonly)

An automatically generated ID for this resource

 Type: Integer

 name

The name of the resource

 Type: String

 numbering_offset (readonly)

The offset that the rack unit positions within this AssetStrip use at the
beginning.

Note: An EMX is treated the same as a PDU.

 Type: Integer

 numbering_scheme (readonly)

The numbering scheme of rack units within the AssetStrip.

 Type: String

 Sample Values: "top_down", "bottom_up"

 ordinal (readonly)

Note: An EMX is treated the same as a PDU

The position within the PDU that this AssetStrip resource occupies

 Type: Integer

 orientation (readonly)

The orientation of the AssetStrip.

 Type: String

 Sample Values: "top_connector", "bottom_connector"

 pdu_id (readonly)

Note: An EMX is treated the same as a PDU

The ID of the PDU that this resource is associated with

 Type: Integer

Chapter 2: REST API

58

 state (readonly)

The state of the AssetStrip.

 Type: String

 Sample Values: "ok","upgrading","unavailable","unsupported"

 updated_at (readonly)

 Type: String

 Sample Values: "2011/10/07 14:50:01 +0000"

Blade_Slot

Blade slots are analogous to rack units, except they attach to vertically
oriented blade servers rather than horizontally oriented rack-mounted
servers.

 Examples

{

 "blade_slot": {

 "id": 1,

 "rack_unit_id": 64,

 "ordinal": 1,

 "tag_id": "",

 "created_at": "2012/09/17 18:52:44 +0000",

 "updated_at": "2012/09/17 18:52:44 +0000"

 }

}

 Chapter 2: REST API

59

Attribute Details

 id

The unique identifier for the blade slot.

 rack_unit_id

The unique identifier for the rack_unit object through which the blade is
connected to the asset strip.

 ordinal

The displayed number of the blade slot. The slot's unique number within
the blade.

 tag_id

The asset tag id string of the asset tag connected to the blade slot. If
none this is empty.

 created_at

The timestamp when this blade slot was created.

 updated_at

The timestamp when this blade slot was last updated.

Chapter 2: REST API

60

Circuit

The Circuit resource represents a single circuit on a PDU. PDUs may
have one or more circuits, and circuits may contain one or more circuit
poles. Generally, circuits belonging to single-phase PDUs will have one
associated circuit pole, and circuits belonging to three-phase PDUs will
have three associated circuit poles.

{

 "circuit": {

 "id": 1,

 "pdu_id": 4,

 "ordinal": 1,

 "rated_amps": 15,

 "reading": {

 "id": 44159,

 "pdu_id": 4,

 "circuit_id": 1,

 "reading_time": "2013/02/04 13:58:34 -0500",

 "voltage": null,

 "min_voltage": null,

 "max_voltage": null,

 "current": 0,

 "min_current": null,

 "max_current": null,

 "unutilized_capacity": 15,

 "min_unutilized_capacity": null,

 "max_unutilized_capacity": null,

 "power_factor": 1,

 "min_power_factor": null,

 "max_power_factor": null,

 "active_power": 0,

 "min_active_power": null,

 "max_active_power": null,

 "apparent_power": 0,

 "min_apparent_power": null,

 "max_apparent_power": null,

 "volt_amp_hour": null,

 "watt_hour": null,

 "circuit_ordinal": 1

 }

 }

}

Attribute Details

 device_id

The ID of the device associated with this circuit (if any exists).

 Type: Integer readonly

 Chapter 2: REST API

61

 id

The ID of the associated Circuit.

 Type: Integer readonly

 name

The name of the circuit.

 Type: String

 ordinal

The ordinal of the circuit on the PDU (i.e., circuit 1, circuit 2, etc.).

 Integer readonly

 panel_id

The ID of the associated Panel within a PDU (specifically a Floor PDU).

 Integer readonly

 pdu_id

The ID of the associated PDU.

 Type: Integer readonly

 pue_it

Should readings for this circuit be included in the IT total energy.

 Type: boolean readonly

 pue_total

Should readings for this circuit be included in the PUE total energy.

 Type: boolean readonly

 rated_amps

Rated Amps (A) on the circuit.

 Type: Integer readonly

Chapter 2: REST API

62

CircuitReading

The CircuitReading resource shows the power data collected from
circuits on the PDU. This resource does not contain any data for PDUs
that do not have circuits. A data record is added for each circuit polled.
This data is summarized hourly in the CircuitReadingsRollup resource.

Note:Circuit readings are periodically purged.

 Examples:

{

 "circuit_reading": [

 {

 "id": 95829,

 "pdu_id": 23,

 "circuit_id": 4,

 "reading_time": "2013/08/01 18:15:16 +0000",

 "voltage": 121,

 "min_voltage": 0,

 "max_voltage": 0,

 "current": 12.1,

 "min_current": 0,

 "max_current": 0,

 "unutilized_capacity": null,

 "min_unutilized_capacity": null,

 "max_unutilized_capacity": null,

 "power_factor": 0.5,

 "min_power_factor": null,

 "max_power_factor": null,

 "active_power": 32,

 "min_active_power": null,

 "max_active_power": null,

 "apparent_power": 64,

 "min_apparent_power": null,

 "max_apparent_power": null,

 "volt_amp_hour": null,

 "watt_hour": 1442,

 "circuit_ordinal": 2

 }

]

}

Attribute Details

 active_power (readonly)

Active Power drawn by the circuit

 Type: Double

 Chapter 2: REST API

63

 apparent_power (readonly)

Apparent Power drawn by the circuit

 Type: Double

 current (readonly)

The current in amps.

 Type: Float

 id (readonly)

An automatically generated ID for this resource

 Type: Integer

 circuit_ordinal (readonly)

The ordinal of the circuit on the PDU (that is, circuit 1, circuit 2, and so
on).

 Type: Integer

 circuit_id (readonly)

 The ID of the associated circuit.

 Type: Integer

 max_active_power (readonly)

 The max_active_power in watts.

 Type: Float

 max_apparent_power (readonly)

 The max_apparent_power in volt-amps.

 Type: Float

 max_current (readonly)

 The max_current in amps.

 Type: Float

 max_power_factor (readonly)

 Maximum power factor on the inlet.

 Type: Double

Chapter 2: REST API

64

 max_unutilized_capacity (readonly)

 The max_unutilized_capacity in amps.

 Type: Float

 max_voltage (readonly)

 The max_voltage in volts.

 Type: Float

 min_current (readonly)

 The min_current in amps.

 Type: Float

 min_active_power (readonly)

The min_active_power in watts.

 Type: Float

 min_apparent_power (readonly)

The min_apparent_power in volt-amps.

 Type: Float

 min_unutilized_capacity (readonly)

The min_unutilized_capacity in amps.

 Type: Float

 min_voltage (readonly)

The min_voltage in volts.

 Type: Float

 pdu_id (readonly)

Note: An EMX is treated the same as a PDU

 The ID of the PDU that this resource is associated with

 Type: Integer

 power_factor (readonly)

Power factor on the circuit.

 Type: Double

 Chapter 2: REST API

65

 reading_time (readonly)

The date and time the reading was collected

 Type: String

 Sample Values: "2011/10/07 14:50:01 +0000"

 unutilized_capacity (readonly)

 Unutilized capacity (Amps)

 Type: Float

 volt_amp_hour (readonly)

 Total volt-amp-hours on the inlet.

 Type: Double

 voltage (readonly)

 The voltage in volts.

 Type: Float

 watt_hour (readonly)

Total watt hours on the circuit.

 Type: Double

Chapter 2: REST API

66

CircuitReadings*Rollup

The CircuitReadings*Rollup resource summarizes the circuit readings
power data over the rollup interval. The “*” may be replaced with the
string Hourly, Daily, or Monthly. For example,
CircuitReadingsHourlyRollup.

Raw data is rolled up every hour, hourly roll-ups are in turn rolled up
once a day, and daily roll-ups are rolled up once a month.

 Examples:

{

 "circuit_reading_hourly_rollups": [

 {

 "average_active_power": 31,

 "average_apparent_power": 62,

 "average_current": 11.3,

 "average_power_factor": 0.5,

 "average_unutilized_capacity": null,

 "average_voltage": 111,

 "circuit_id": 46,

 "id": 52088,

 "max_active_power": 31,

 "max_apparent_power": 62,

 "max_current": 11.3,

 "max_power_factor": 0.5,

 "max_unutilized_capacity": null,

 "max_voltage": 111,

 "min_active_power": 31,

 "min_apparent_power": 62,

 "min_current": 11.3,

 "min_power_factor": 0.5,

 "min_unutilized_capacity": null,

 "min_voltage": 111,

 "pdu_id": 52,

 "reading_time": "2013/10/13 00:00:00 +0000",

 "volt_amp_hour": null,

 "watt_hour": 1441,

 "watt_hour_delta": 0

 }

]

}

Attribute Details

 average_active_power (readonly)

Average active power (Watts) reading during rollup interval

 Type: Double

 Chapter 2: REST API

67

 average_apparent_power (readonly)

Average apparent power (VA) reading during rollup interval

 Type: Double

 average_current (readonly)

The average_current field

 Type: Float

 average_power_factor (readonly)

Average power factor on the circuit.

 Type: Double

 average_unutilized_capacity (readonly)

The average_unutilized_capacity field

 Type: Float

 average_voltage (readonly)

The average_voltage in volts.

 Type: Float

 id (readonly)

An automatically generated ID for this resource

 Type: Integer

 circuit_id (readonly)

The ID of the associated circuit.

 Type: Integer

 max_active_power (readonly)

Maximum active power (Watts) reading during rollup interval

 Type: Double

 max_apparent_power (readonly)

Maximum apparent power (VA) reading during rollup interval

 Type: Double

Chapter 2: REST API

68

 max_current (readonly)

 The max_current in amps.

 Type: Float

 max_power_factor (readonly)

Maximum power factor on the circuit.

 Type: Double

 max_unutilized_capacity (readonly)

The max_unutilized_capacity in amps.

 Type: Float

 max_voltage (readonly)

The max_voltage in volts.

 Type: Float

 min_current (readonly)

The min_current in amps.

 Type: Float

 min_active_power (readonly)

Lowest active power (Watts) reading during rollup interval

 Type: Double

 min_apparent_power (readonly)

Lowest apparent power (VA) reading during rollup interval

 Type: Double

 min_current (readonly)

The min_current field in amps

 Type: Float

 min_power_factor (readonly)

Minimum power factor on the circuit.

 Type: Double

 Chapter 2: REST API

69

 min_unutilized_capacity (readonly)

The min_unutilized_capacity field

 Type: Float

 min_voltage (readonly)

The min_voltage in volts.

 Type: Float

 pdu_id (readonly)

Note: An EMX is treated the same as a PDU

The ID of the PDU that this resource is associated with

 Type: Integer

 reading_time (readonly)

The date and time the reading was collected

 Type: String

 Sample Values: "2011/10/07 14:50:01 +0000"

 volt_amp_hour (readonly)

 Total volt-amp-hours on the circuit.

 Type: Double

 watt_hour (readonly)

Total watt hours on the circuit.

 Type: Double

Chapter 2: REST API

70

CircuitBreakerReadings

The CircuitBreakerReadings resource shows the power data collected
from circuit breakers on the PDU. This resource does not contain any
data for PDUs that do not have circuit breakers. A data record is added
for each circuit breaker polled. This data is summarized hourly in the
CircuitBreakerReadingsRollup resource.

Note: Circuit breaker readings are periodically purged

 Examples:

{"circuit_breaker_reading" : {

 "id":3538,

 "circuit_breaker_id":1,

 "reading_time":"2011/10/17 15:24:49 +0000",

 "current":0.0,

 "unutilized_capacity":20.0,

 "pdu_id":15,

 "max_current":null,

 "min_current":null}}

Attribute Details

 circuit_breaker_id (readonly)

The ID of the CircuitBreaker that this resource is associated with

 Type: Integer

 current

The current in amps

 Type: Float

 current_amps (readonly) DEPRECATED Use #current

 id (readonly)

An automatically generated ID for this resource

 Type: Integer

 max_current_amps (readonly) DEPRECATED Use #max_current

The max_current_amps field

 Type: Float

 Chapter 2: REST API

71

 min_current_amps (readonly) DEPRECATED Use #min_current

The min_current_amps field

 Type: Float

 pdu_id (readonly)

Note: An EMX is treated the same as a PDU

The ID of the PDU that this resource is associated with

 Type: Integer

 reading_time (readonly)

The date and time the reading was collected

 Type: String

 Sample Values: "2011/10/07 14:50:01 +0000"

 unutilized_capacity (readonly)

The unutilized_capacity in amps.

 Type: Float)

CircuitBreakerReadings*Rollup

The CircuitBreakerReadings*Rollup resource summarizes the circuit
breaker readings power data over the rollup interval. The “*” may be
replaced with the string Hourly, Daily, or Monthly. For example,
CircuitBreakerReadingsHourlyRollup.

Raw data is rolled up every hour, hourly roll-ups are in turn rolled up
once a day, and daily roll-ups are rolled up once a month.

 Examples:

{

 "circuit_breaker_readings_hourly_rollup": {

 "id": 1,

 "circuit_breaker_id": 13,

 "reading_time": "2011/10/07 14:00:00 +0000",

 "min_current": 0.8,

 "max_current": 0.8,

 "average_current": 0.8,

 "min_unutilized_capacity": 19.2,

 "max_unutilized_capacity": 19.2,

 "average_unutilized_capacity": 19.2,

 "pdu_id": 26

 }

}

Chapter 2: REST API

72

Attribute Details

 average_current (readonly)

The average_current field

 Type: Float

 average_unutilized_capacity (readonly)

The average_unutilized_capacity field

 Type: Float

 circuit_breaker_id (readonly)

The ID of the CircuitBreaker that this resource is associated with

 Type: Integer

 id (readonly)

An automatically generated ID for this resource

 Type: Integer

 max_current (readonly)

The max_current field

 Type: Float

 max_unutilized_capacity (readonly)

The max_unutilized_capacity field

 Type: Float

 min_current (readonly)

The min_current field in amps

 Type: Float

 min_unutilized_capacity (readonly)

The min_unutilized_capacity field

 Type: Float

 Chapter 2: REST API

73

 pdu_id (readonly)

Note: An EMX is treated the same as a PDU

The ID of the PDU that this resource is associated with

 Type: Integer

 reading_time (readonly)

The date and time the reading was collected

 Type: String

 Sample Values: "2011/10/07 14:50:01 +0000"

Configuration

Attribute Details

 allow_html_portlets (readonly)

The allow_html_portlets field

 Type: Boolean

 browser_session_polling_interval (readonly)

The browser_session_polling_interval field

 Type: Integer

 canonical_domain (readonly)

The canonical_domain field

 Type:String

 currency (readonly)

The currency field

 Type: String

 data_center_custom_field_1 (readonly)

The data_center_custom_field_1 field

 Type: String

 data_center_custom_field_2 (readonly)

The data_center_custom_field_2 field

 Type:String

Chapter 2: REST API

74

 device_custom_field_1 (readonly)

The device_custom_field_1 field

 Type:String

 device_custom_field_2 (readonly)

The device_custom_field_2 field

 Type: String

 enable_browser_power_control (readonly)

The enable_browser_power_control field

 Type: Boolean

 enable_custom_logo (readonly)

The enable_custom_logo field

 Type:Boolean

 enable_event_notifications (readonly)

The enable_event_notifications field

 Type:Boolean

 enable_power_control (readonly)

The enable_power_control field

 Type: Boolean

 enable_scheduled_power_control (readonly)

The enable_scheduled_power_control field

 Type: Boolean

 enable_web_api (readonly)

The enable_web_api field

 Type: Boolean

 enable_web_api_user (readonly)

The enable_web_api_user field

 Type: Boolean

 Chapter 2: REST API

75

 eula_accepted (readonly)

The eula_accepted field

 Type: Boolean

 from_email (readonly)

The from_email field

 Type: String

 login_body (readonly)

The login_body field

 Type: String

 login_header (readonly)

The login_header field

 Type: String

 ntp_enabled (readonly)

The ntp_enabled field

 Type: Boolean

 password_max_length (readonly)

The password_max_length field

 Type: Integer

 password_min_length (readonly)

The password_min_length field

 Type: Integer

 password_requires_one_lowercase (readonly)

The password_requires_one_lowercase field

 Type: Boolean

 password_requires_one_numeric (readonly)

The password_requires_one_numeric field

 Type:Boolean

Chapter 2: REST API

76

 password_requires_one_special (readonly)

The password_requires_one_special field

 Type: Boolean

 password_requires_one_uppercase (readonly)

The password_requires_one_uppercase field

 Type: Boolean

 pdu_custom_field_1 (readonly)

The pdu_custom_field_1 field

 Type: String

 pdu_custom_field_2 (readonly)

The pdu_custom_field_2 field

 Type:String

 pdu_label (readonly)

The pdu_label field

 Type: String

 px_minimum_version (readonly)

The px_minimum_version field

 Type: String

 remote_storage_directory (readonly)

The remote_storage_directory field

 Type: String

 remote_storage_enabled (readonly)

The remote_storage_enabled field

 Type: Boolean

 remote_storage_ftp_user (readonly)

The remote_storage_ftp_user field

 Type: String

 Chapter 2: REST API

77

 remote_storage_host (readonly)

The remote_storage_host field

 Type: String

 remote_storage_port (readonly)

The remote_storage_port field

 Type: Integer

 remote_storage_protocol (readonly)

The remote_storage_protocol field

 Type: String

 remote_storage_push_backup (readonly)

The remote_storage_push_backup field

 Type: Boolean

 remote_storage_push_csv (readonly)

The remote_storage_push_csv field

 Type: Boolean

 remote_storage_s3_ssl_only (readonly)

The remote_storage_s3_ssl_only field

 Type: Boolean

 require_power_control_audit_message (readonly)

The require_power_control_audit_message field

 Type: Boolean

 rss_enabled (readonly)

The rss_enabled field

 Type: Boolean

 rss_extra_text (readonly)

The rss_extra_text field

 Type: String

Chapter 2: REST API

78

 session_timeout (readonly)

The session_timeout field

 Type: Integer

 site_locale (readonly)

The site_locale field

 Type: String

 smtp_auth_type (readonly)

The smtp_auth_type field

 Type: String

 smtp_encryption_method (readonly)

The smtp_encryption_method field

 Type: String

 smtp_port (readonly)

The smtp_port field

 Type: Integer

 smtp_server (readonly)

The smtp_server field

 Type: String

 smtp_username (readonly)

The smtp_username field

 Type: String

 snmp_version (readonly)

The snmp_version field

 Type: String

 sso_enabled (readonly)

The sso_enabled field

 Type: String

 Chapter 2: REST API

79

 temperature_unit (readonly)

The temperature_unit field

 Type: String

 time_zone (readonly)

The time_zone field

 Type: String

 time_zone_offset (readonly)

The time_zone_offset field

 Type: String

DataCenter

Physical data center. Part of the data center hierarchy that can be used
to model your site. A data center is always the topmost element in the
data center hierarchy.

 Examples:

{"data_center" : {

 "id" : 2,

 "name" :"My Data Center",

 "company_name" :"MyCompany",

 "contact_name" :"MyName",

 "contact_phone" : "999-999-9999",

 "contact_email" : "MyName@MyCompany.co",

 "city" : "Raleigh",

 "state" : "NC",

 "country" : "USA",

 "peak_kwh_rate" : 0.1,

 "off_peak_kwh_rate" : 0.06,

 "peak_begin" : 7.0,

 "peak_end" : 19.0,

 "co2_factor" : 0.6,

 "cooling_factor" : 1.0,

 "custom_field_1" : "field1",

 "custom_field_2" :"field2",

 "external_key" :"Data Center -- 2",

 "capacity" :1.0,

 "cooling_savings" : 7.0

 "pue_threshold_minimum": "2.0",

 "pue_threshold_maximum": "3.0

}}

Chapter 2: REST API

80

Attribute Details

 capacity

User-defined power capacity in kW

 Type: Double

 Sample Values: 1.0

 city

City location for the DataCenter

 Type: String

 co2_factor

User-defined CO2 computational factor

 Type: Double

 company_name

Name of the company that corresponds to the DataCenter

 Type: String

 contact_email

Email of the person to contact for the DataCenter

 Type: String

 contact_name

Name of the person to contact for the DataCenter

 Type: String

 contact_phone

Phone of the person to contact for the DataCenter

 Type: String

 cooling_factor

User-defined cooling computational factor

 Type: Double

 Chapter 2: REST API

81

 cooling_savings

User-defined savings % per degrees C

 Type: (Double)

 Sample Values: 7

 country

Country location for the DataCenter

 Type: (String)

 custom_field_1

User-defined customizable field

 Type: (String)

 custom_field_2

User-defined customizable field

 Type: String

 external_key

A code used to uniquely identify this resource

 Type: String

 id (readonly)

An automatically generated ID for this resource

 Type: Integer

 name

The name of the resource

 Type: String

 off_peak_kwh_rate

User-defined energy cost per Kilowatt Hour during off-peak hours

 Type: Double

 peak_begin

User-defined time of day peak hours begin

 Type: Double

 Sample Values: 19.5 (corresponding to 19:30 hours)

Chapter 2: REST API

82

 peak_end

User-defined time of day peak hours ends

 Type: Double

 Sample Values: 19.5 (corresponding to 19:30 hours)

 peak_kwh_rate

User-defined energy cost per Kilowatt Hour during peak hours

 Type: Double

 pue_threshold_minimum

Threshold for drawing the PUE Gauge on the dashboard

 Type: Integer

 pue_threshold_maximum

Threshold for drawing the PUE Gauge on the dashboard

 Type: Integer

 state

State location for the DataCenter

 Type: String

Device

Physical device in a data center. Part of the data center hierarchy that
can be used to model your site. Unlike other data center hierarchy
resources, devices can have outlets associated with them. Devices can
also be associated with AssetStrips through RackUnits.

 Examples:

{"device":{

 "id":143,

 "name":"Device for PDU 192.168.43.42 outlet not used",

 "customer":"Unknown", "device_type":"Default Generated

Device",

 "power_rating":100,

 "decommissioned":true,

 "custom_field_1":"field1",

 "custom_field_2":"field2",

 "external_key":"IT Device -- 143",

 "ip_address":"192.168.43.122",

 "asset_tag_id":""

 }}

 Chapter 2: REST API

83

Attribute Details

 asset_tag_id (readonly)

An internally generated unique identifier that is used to associate a
device with a RackUnit. The value comes directly from the RackUnit
asset strip.

 Type: String

 custom_field_1

User-defined customizable field

 Type: String

 custom_field_2

User-defined customizable field

 Type: String

 customer

Customer that the Device belongs to

 Type: String

 decommissioned

User-defined flag to indicate whether this device is decommissioned

 Type: Boolean

 device_type

User-defined device type

 Type: String

 external_key

A code used to uniquely identify this resource

 Type: String

 id (readonly)

An automatically generated ID for this resource

 Type: Integer

 ip_address

IP address for the Device

 Type: String

Chapter 2: REST API

84

 name

The name of the resource

 Type: String

 power_rating

User-defined power in watts that this device is rated for

 Type: Integer

Device Groups

Groups of physical devices in a data center, created for purposes of
organization, and for power control of devices in the group.

 Examples:

 # device groups

 POST /api/v2/device_groups/power_control

 {

 "state": "ON",

 "device_groups": [1, 2, 3]

 }

Attribute Details

Device group attributes are not exposed through the REST API. The API
can only control power to device groups.

 Chapter 2: REST API

85

Event

Events generated typically by PDU SNMP traps forwarded to Power IQ.
Events can also be generated internally by Power IQ.

 Examples:

{"event":{

 "id":4,

 "event_config_id":62,

 "source":2,

 "created_at":"2011/10/07 16:02:46 +0000",

 "pdu_id":15, "pdu_outlet_id":null,

 "pdu_circuitbreaker_id":null,

 "sensor_id":null,

 "trap_oid":null,

 "cleared_by":3,

 "cleared_at":"2011/10/07 19:29:26 +0000",

 "clearing_event_id":null,

 "clearing_user_id":null,

 "notification_status":6,

 "asset_strip_id":null,

 "rack_unit_id":null,

 "params":[

 {

 "key":"test",

 "value":"test"

 },

 {

 "key":"timestamp",

 "value":"1317999602806"

 }

]

 }}

Attribute Details

 asset_strip_id (readonly)

The ID of the AssetStrip that this resource is associated with

 Type: Integer

 blade_slot_id (readonly)

The ID of the associated BladeSlot.

 Type: Integer

Chapter 2: REST API

86

 cleared_at (readonly)

The date and time the event was cleared

 Type: String

 cleared_by (readonly)

The source from which the event was cleared by

 Type: Integer

 Sample Values: 1 = Event, 2 = User, 3 = Trap

 clearing_event_id (readonly)

The ID of the Event that this event was cleared by

 Type: Integer

 clearing_user_id (readonly)

Note: User resources cannot be retrieved by the API

The ID of the User that cleared this event

 Type: Integer

 created_at (readonly)

The date and time this resource was created

 Type: String

 Sample Values: "2011/10/07 14:50:00 +0000"

 event_config_id (readonly)

The EventConfig that this resource is associated with. The EventConfig
can be used to identify the type of event that occurred.

 Type: Integer

 id (readonly)

An automatically generated ID for this resource

 Type: Integer

 notification_status (readonly)

The current state or results of the notification that was sent regarding this
event

 Type: Integer

 Chapter 2: REST API

87

 Sample Values: 1 = Unsent, 2 = Sent Active, 3 = Sent Cleared, 4
= Failed Active, 5 = Failed Cleared, 6 = Processed

 outlet_id (readonly)

The ID of the associated Outlet.

 Type: Integer

 params (readonly)

Multi-varied parameters associated with the event

 Type: Mixed

 Sample Values: "key":"key1","value":"val1",
"key":"key2","value":"val2"

 pdu_circuitbreaker_id (readonly) DEPRECATED Use
#circuit_breaker_id

The ID of the CircuitBreaker that this resource is associated with

 Type: Integer

 pdu_id (readonly)

Note:An EMX is treated the same as a PDU

The ID of the PDU that this resource is associated with

 Type: Integer

 pdu_outlet_id (readonly) DEPRECATED Use #outlet_id

The ID of the Outlet that this resource is associated with

 Type: Integer

 rack_unit_id (readonly)

The ID of the RackUnit that this resource is associated with

 Type: Integer

 sensor_id (readonly)

The ID of the sensor that this resource is associated with

 Type: Integer

 source (readonly)

The source identifies where the event came from

 Type: Integer

Chapter 2: REST API

88

 Sample Values: 1 = SNMP Trap, 2 = Generated internally

 trap_oid (readonly)

The SNMP OID of the trap

 Type: String

Floor

Physical floor in a data center. Part of the data center hierarchy that can
be used to model your site.

 Examples:

{"floor" : {

 "id" : 2,

 "name" :"Floor 2",

 "external_key" :"Floor -- 2",

 "capacity" :1.0

}}

Attribute Details

 capacity

User-defined power capacity in kW

 Type: Double

 Sample Values: 1.0

 external_key

A code used to uniquely identify this resource

 Type: String

 id (readonly)

An automatically generated ID for this resource

 Type: Integer

 name

The name of the resource

 Type: String

 Chapter 2: REST API

89

Inlet

The Inlet resource represents a single inlet on a PDU. PDUs may have
one or more inlets, and inlets may contain one or more inlet poles.
Generally, inlets belonging to single-phase PDUs will have one
associated inlet pole, and inlets belonging to three-phase PDUs will have
three associated inlet poles.

 Examples:

{

 "inlets": [

 {

 "id": 1,

 "pdu_id": 2,

 "ordinal": 1,

 "rated_amps": 15,

 "panel_id": null,

 "source": true,

 "pue_total": false,

 "pue_it": true,

 "reading": {

 "id": 426263,

 "pdu_id": 2,

 "inlet_id": 1,

 "reading_time": "2013/10/25 18:34:26

+0000",

 "voltage": null,

 "min_voltage": null,

 "max_voltage": null,

 "current": 0,

 "min_current": null,

 "max_current": null,

 "unutilized_capacity": 15,

 "min_unutilized_capacity": null,

 "max_unutilized_capacity": null,

 "power_factor": "1.0",

 "min_power_factor": null,

 "max_power_factor": null,

 "active_power": "0.0",

 "min_active_power": null,

 "max_active_power": null,

 "apparent_power": "0.0",

 "min_apparent_power": null,

 "max_apparent_power": null,

 "volt_amp_hour": null,

 "watt_hour": null,

 "inlet_ordinal": 1

 }

 }

]

}

Chapter 2: REST API

90

Attribute Details

 id (readonly)

An automatically generated ID for this resource.

 Type: Integer

 ordinal (readonly)

The ordinal of the inlet on the PDU (i.e., inlet 1, inlet 2, etc.).

 Type: Integer

 panel_id

Panel inlets are just like inlets, so the response for a panel inlet will be
identical to an inlet. Panel inlet only applies to Floor PDU type of PDU.

 Type: Integer

 pdu_id (readonly)

Note: An EMX is treated the same as a PDU.

The ID of the associated PDU.

 Type: Integer

 pue_it

Counts toward IT power in PUE calculations.

 Type: Boolean

 pue_total

Counts toward Total power in PUE calculations.

 Type: Boolean

 rated_amps (readonly)

Rated Amps (A) on the inlet.

 Type: Integer

 reading (readonly)

The latest reading for this inlet. See InletReading (on page 98).

 Chapter 2: REST API

91

Inlet Pole

The InletPole resource represents a single wire within an inlet on a PDU.

 Examples:

{

 "inlet_pole": {

 "id": 18,

 "inlet_id": 11,

 "pdu_id": 14,

 "ordinal": 2,

 "reading": {

 "id": 68099,

 "reading_time": "2013/02/04 14:17:12 -0500",

 "current": 2.971,

 "unutilized_capacity": 29.029,

 "pdu_id": 14,

 "max_current": null,

 "min_current": null,

 "inlet_pole_id": 18,

 "voltage": 204.96,

 "min_voltage": null,

 "max_voltage": null,

 "min_unutilized_capacity": null,

 "max_unutilized_capacity": null,

 "inlet_id": 11,

 "inlet_ordinal": 3,

 "inlet_pole_ordinal": 2

 }

 }

}

Attribute Details

 id (readonly)

An automatically generated ID for this resource.

 Type: Integer

 inlet_id (readonly)

The ID of the associated Inlet.

 Type: Integer

 ordinal (readonly)

The ordinal of the inlet pole on the PDU inlet (i.e., pole 1, pole 2, etc.).

 Type: Integer

Chapter 2: REST API

92

 pdu_id (readonly)

Note: An EMX is treated the same as a PDU.

The ID of the associated PDU.

 Type: Integer

 reading (readonly)

The latest reading for this inlet pole. See InletPoleReading (on page
92).

InletPoleReading

The InletPoleReading resource shows the power data collected from
PDU current-carrying poles. A data record is added for each pole polled.
Single-phase PDUs have 1 pole. Three-phase PDUs have 3 poles. This
data is summarized hourly in an InletPoleReadingRollup resource.

Note: Inlet pole readings are periodically purged.

 Examples:

{

 "inlet_pole_reading": {

 "id": 576,

 "pdu_id": 9,

 "inlet_id": 3,

 "inlet_ordinal": 1,

 "inlet_pole_id": 1,

 "inlet_pole_ordinal": 1,

 "reading_time": "2011/10/21 13:51:12 -0400",

 "current": 1.0,

 "max_current": 1.0,

 "min_current": 1.0,

 "unutilized_capacity": 23.0,

 "max_unutilized_capacity": 23.0,

 "min_unutilized_capacity": 23.0,

 "voltage": 207.0,

 "max_voltage": 207.0,

 "min_voltage": 207.0

 }

}

Attribute Details

 current (readonly)

The current in amps.

 Type: Float

 Chapter 2: REST API

93

 current_amps (readonly) DEPRECATED Use #current.

The amp reading for the line

 Type: Double

 id (readonly)

An automatically generated ID for this resource

 Type: Integer

 inlet_id (readonly)

The ID of the associated Inlet.

 Type: Integer

 inlet_ordinal (readonly)

The ordinal of the inlet on the PDU (i.e., inlet 1, inlet 2, etc.).

 Type: Integer

 inlet_pole_id (readonly)

The ID of the associated InletPole.

 Type: Integer

 inlet_pole_ordinal (readonly)

The ordinal of the inlet pole on the PDU inlet (i.e., pole 1, pole 2, etc.).

 Type: Integer

 max_current (readonly)

The max_current in amps.

 Type: Float

 max_unutilized_capacity (readonly)

The max_unutilized_capacity in amps.

 Type: Float

 max_voltage (readonly)

The max_voltage in volts.

 Type: Float

Chapter 2: REST API

94

 min_current (readonly)

The min_current in amps.

 Type: Float

 min_unutilized_capacity (readonly)

The min_unutilized_capacity in amps.

 Type: Float

 min_voltage (readonly)

The min_voltage in volts.

 Type: Float

 pdu_id (readonly)

Note:An EMX is treated the same as a PDU

The ID of the PDU that this resource is associated with

 Type: Integer

 reading_time (readonly)

The date and time the reading was collected

 Type: String

 Sample Values: "2011/10/07 14:50:01 +0000"

 unutilized_capacity (readonly)

Unutilized capacity (Amps)

 Type: Float

 voltage(readonly)

The voltage in volts.

 Type: Float

 Chapter 2: REST API

95

InletPoleReading*Rollup

Note: When data is rolled up, shorter interval roll-up entries in the
InletPoleReadingRollup are purged.

The InletPoleReading*Rollup resources summarize the inlet pole reading
power data over the rollup interval. The “*” may be replaced with the
string Hourly, Daily, or Monthly. For example,
InletPoleReadingHourlyRollup.

Raw data is rolled up every hour, hourly roll-ups are in turn rolled up
once a day, and daily roll-ups are rolled up once a month.

 Examples:

{

 "inlet_pole_reading_hourly_rollups": [

 {

 "id”: 2,

 "max_voltage": 118,

 "pdu_id": 41,

 "average_voltage": 116.351,

 "reading_time": "2012/09/12 13:00:00 -0400",

 "min_current": 0.749,

 "average_unutilized_capacity": 10.8366,

 "max_unutilized_capacity": 11.251,

 "inlet_pole_id": 38,

 "min_voltage": 115,

 "average_current": 1.16337,

 "max_current": 1.702,

 "min_unutilized_capacity": 10.298

 }

]

}

{

 "inlet_pole_reading_daily_rollups": [

 {

 "id”: 7,

 "max_voltage": 119,

 "pdu_id": 41,

 "average_voltage": 116.507,

 "reading_time": "2012/09/12",

 "min_current": 1.139,

 "average_unutilized_capacity": 10.8081,

 "max_unutilized_capacity": 10.861,

 "inlet_pole_id": 38,

 "min_voltage": 115,

 "average_current": 1.19194,

 "max_current": 1.355,

 "min_unutilized_capacity": 10.645

 }

]

Chapter 2: REST API

96

}

Attribute Details

 average_current (readonly)

Average current (Amps) reading on the line during rollup interval

 Type: Double

 average_unutilized_capacity (readonly)

Average unutilized capacity (Amps) on the line during rollup interval

 Type: Double

 average_voltage (readonly)

The average_voltage in volts.

 Type: Float

 id (readonly)

An automatically generated ID for this resource

 Type: Integer

 inlet_pole_id readonly

The ID of the associated InletPole.

 Type: Integer

 max_current (readonly)

The max_current in amps.

 Type: Float

 max_unutilized_capacity (readonly)

The max_unutilized_capacity in amps.

 Type: Float

 max_voltage (readonly)

The max_voltage in volts.

 Type: Float

 Chapter 2: REST API

97

 min_current (readonly)

The min_current in amps.

 Type: Float

 min_unutilized_capacity (readonly)

The min_unutilized_capacity in amps.

 Type: Float

 min_voltage (readonly)

The min_voltage in volts.

 Type: Float

 pdu_id (readonly)

Note: An EMX is treated the same as a PDU

The ID of the PDU that this resource is associated with

 Type: Integer

 reading_time (readonly)

The date and time the reading was collected

 Type: String

 Sample Values: "2011/10/07 14:50:01 +0000"

Chapter 2: REST API

98

InletReading

The InletReading view shows the raw power data collected from PDUs.
A data record is added for each inlet of each PDU polled. Inlets are also
referred to as infeed, or line in. This data is summarized hourly in
InletReadingHourlyRollup, and the readings in this view are purged.

 Examples:

{

 "inlet_reading": {

 "inlet_id": 16,

 "inlet_ordinal": 1,

 "volt_amp_hour": null,

 "min_unutilized_capacity": null,

 "max_power_factor": null,

 "min_apparent_power": null,

 "voltage": 118.5,

 "active_power": 0,

 "min_voltage": null,

 "pdu_id": 27,

 "max_current": null,

 "current": 0,

 "min_current": null,

 "max_apparent_power": null,

 "unutilized_capacity": 12,

 "watt_hour": null,

 "power_factor": 0,

 "id": 31447,

 "max_unutilized_capacity": null,

 "max_voltage": null,

 "min_power_factor": null,

 "max_active_power": null,

 "apparent_power": 0,

 "reading_time": "2012/10/25 14:09:39 -0400",

 "min_active_power": null

 }

}

Attribute Details

 active_power (readonly)

Active Power drawn by the PDU

 Type: Double

 apparent_power (readonly)

Apparent Power drawn by the PDU

 Type: Double

 Chapter 2: REST API

99

 current (readonly)

The current in amps.

 Type: Float

 id (readonly)

An automatically generated ID for this resource

 Type: Integer

 inlet_ordinal (readonly)

The ordinal of the inlet on the PDU (i.e., inlet 1, inlet 2, etc.).

 Type: Integer

 inlet_id (readonly)

The ID of the associated Inlet.

 Type: Integer

 max_active_power (readonly)

The max_active_power in watts.

 Type: Float

 max_apparent_power (readonly)

The max_apparent_power in volt-amps.

 Type: Float

 max_current (readonly)

The max_current in amps.

 Type: Float

 max_power_factor (readonly)

Maximum power factor on the inlet.

 Type: Double

 max_unutilized_capacity (readonly)

The max_unutilized_capacity in amps.

 Type: Float

Chapter 2: REST API

100

 max_voltage (readonly)

The max_voltage in volts.

 Type: Float

 min_current (readonly)

The min_current in amps.

 Type: Float

 min_active_power (readonly)

The min_active_power in watts.

 Type: Float

 min_apparent_power (readonly)

The min_apparent_power in volt-amps.

 Type: Float

 min_unutilized_capacity (readonly)

The min_unutilized_capacity in amps.

 Type: Float

 min_voltage (readonly)

The min_voltage in volts.

 Type: Float

 pdu_id (readonly)

Note: An EMX is treated the same as a PDU

 The ID of the PDU that this resource is associated with

 Type: Integer

 power_factor (readonly)

Power factor on the inlet.

 Type: Double

 reading_time (readonly)

The date and time the reading was collected

 Type: String

 Chapter 2: REST API

101

 Sample Values: "2011/10/07 14:50:01 +0000"

 unutilized_capacity (readonly)

Unutilized capacity (Amps)

 Type: Float

 volt_amp_hour (readonly)

Total volt-amp-hours on the inlet.

 Type: Double

 voltage (readonly)

The voltage in volts.

 Type: Float

 watt_hour (readonly)

Total watt hours on the inlet.

 Type: Double

InletReading*Rollup

 InletReadingsHourlyRollup

 InletReadingsDailyRollup

 InletReadingsMonthlyRollup

The InletReadingsRollup resource summarizes the inlet reading power
data over the roll-up interval. The “*” may be replaced with the string
Hourly, Daily, or Monthly. For example, InletReadingHourlyRollup.

Raw data is rolled up every hour, hourly roll-ups are in turn rolled up
once a day, and daily roll-ups are rolled up once a month.

 Examples:

{ "inlet_readings_hourly_rollups" : {

 "average_active_power" : 180.667,

 "average_apparent_power" : 239.333,

 "id" : 3,

 "max_active_power" : 181.0,

 "max_apparent_power" : 249.0,

 "min_active_power" : 180.0,

 "min_apparent_power" : 234.0,

 "pdu_id" : 9,

 "reading_time" : "2011/10/20 18:00:00 -0400",

 "rollup_interval" : 1,

 "watt_hour" : 1358360.0

}

Chapter 2: REST API

102

Attribute Details

 average_active_power (readonly)

Average active power (Watts) reading during rollup interval

 Type: Double

 average_apparent_power (readonly)

Average apparent power (VA) reading during rollup interval

 Type: Double

 average_current (readonly)

The average_current field

 Type: Float

 average_power_factor (readonly)

Average power factor on the inlet.

 Type: Double

 average_unutilized_capacity (readonly)

The average_unutilized_capacity field

 Type: Float

 average_voltage (readonly)

The average_voltage in volts.

 Type: Float

 id (readonly)

An automatically generated ID for this resource

 Type: Integer

 inlet_id (readonly)

The ID of the associated Inlet.

 Type: Integer

 max_active_power (readonly)

Maximum active power (Watts) reading during rollup interval

 Type: Double

 Chapter 2: REST API

103

 max_apparent_power (readonly)

Maximum apparent power (VA) reading during rollup interval

 Type: Double

 max_current (readonly)

The max_current in amps.

 Type: Float

 max_power_factor (readonly)

Maximum power factor on the inlet.

 Type: Double

 max_unutilized_capacity (readonly)

The max_unutilized_capacity in amps.

 Type: Float

 max_voltage (readonly)

The max_voltage in volts.

 Type: Float

 min_current (readonly)

The min_current in amps.

 Type: Float

 min_active_power (readonly)

Lowest active power (Watts) reading during rollup interval

 Type: Double

 min_apparent_power (readonly)

Lowest apparent power (VA) reading during rollup interval

 Type: Double

 min_current (readonly)

The min_current field in amps

 Type: Float

Chapter 2: REST API

104

 min_power_factor (readonly)

Minimum power factor on the inlet.

 Type: Double

 min_unutilized_capacity (readonly)

The min_unutilized_capacity field

 Type: Float

 min_voltage (readonly)

The min_voltage in volts.

 Type: Float

 pdu_id (readonly)

Note: An EMX is treated the same as a PDU

The ID of the PDU that this resource is associated with

 Type: Integer

 reading_time (readonly)

The date and time the reading was collected

 Type: String

 Sample Values: "2011/10/07 14:50:01 +0000"

 volt_amp_hour (readonly)

Total volt-amp-hours on the inlet.

 Type: Double

 watt_hour (readonly)

Total watt hours on the inlet.

 Type: Double

 Chapter 2: REST API

105

Job

A Job is used to execute certain tasks in Power IQ. These tasks usually
involve the execution of SNMP queries, or other heavy duty processing.
A Job resource is returned by the REST API when a request is executed
asynchronously. A Job will have one or more JobMessages, which
describe the execution of the job in greater detail.

 Examples:

{"job":{

 "id":1,

 "user_id":1,

 "status":"COMPLETED",

 "description":null,

 "start_time":"2011/10/07 14:54:32 +0000",

 "end_time":"2011/10/07 14:54:33 +0000",

 "has_errors":false,

 "percent_complete":1.0,

 "completed":true,

 "last_message":"Discovered PDU 192.168.43.122, now

queuing for poll.",

 "error_count":0

}}

Attribute Details

 completed (readonly)

Indicates whether the job has finished or not

 Type: Boolean

 end_time (readonly)

The date and time the sub-task of the job that this JobMessage is related
to was completed

 Type: String

 Sample Values: "2011/10/07 14:50:00 +0000"

 error_count (readonly)

The number of errors that occurred during execution of this Job

 Type: Integer

 has_errors (readonly)

Indicates whether the job has errors or not

 Type: Boolean

Chapter 2: REST API

106

 id (readonly)

An automatically generated ID for this resource

 Type: Integer

 last_message (readonly)

The text of the most recent JobMessage for the job

 Type: String

 percent_complete (readonly)

Indicates how much progress towards completion the job is as a
percentage

 Type: Float

 start_time (readonly)

Note:The timezone for all date and time fields is always UTC (+0000).
Time granularity is returned in seconds but internally stored to the usec.
Be aware of this when performing searches against particular times.

The date and time the sub-task of the job that this JobMessage is related
to was completed

 Type: String

 Sample Values: "2011/10/07 14:50:00 +0000"

 status (readonly)

The status of the Job

 Type: String

 Sample Values: ACTIVE = job is still running, COMPLETED = job
has finished, ABORTED = job was aborted

 user_id (readonly)

The User that created the Job

 Type: Integer

 Chapter 2: REST API

107

JobMessage

A JobMessage describes detailed information about an executed Job.

 Examples:

{"job_message":{

 "id":1,

 "unit_of_work":0.5,

 "job_id":1,

 "level":"INFO",

 "trace":null,

 "start_time":"2011/10/07 14:54:33 +0000",

 "end_time":null,

"message_key":":magic.pdu_discovered_sysoid_no_proxy_

id",

"message_vars":"{\"sysoid\":\"1.3.6.1.4.1.13742.4\",\

"ip\":\"192.168.43.122\"}",

 "aborted":false,

 "message":"Discovering PDU 192.168.43.122 and found

SystemObjectID of 1.3.6.1.4.1.13742.4"

}}

Attribute Details

 aborted (readonly)

The sub-task of the job that this JobMessage is related to was aborted

 Type: String

 end_time (readonly)

The date and time the sub-task of the job that this JobMessage is related
to was completed

 Type: String

 Sample Values: "2011/10/07 14:50:00 +0000"

 id (readonly)

An automatically generated ID for this resource

 Type: Integer

 job_id (readonly)

The ID of the Job that this JobMessage is associated with

 Type: Integer

Chapter 2: REST API

108

 level (readonly)

Indicates the severity of the message

 Type: String

 Sample Values: DEBUG, INFO, WARN, ERROR, FATAL,
UNKNOWN

 message (readonly)

Human readable, localized job message text.

 Type: String

 start_time (readonly)

Note:The timezone for all date and time fields is always UTC (+0000).
Time granularity is returned in seconds but internally stored to the usec.
Be aware of this when performing searches against particular times.

The date and time the sub-task of the job that this JobMessage is related
to was started

 Type: String

 Sample Values: "2011/10/07 14:50:00 +0000"

 trace (readonly)

Diagnostic stack trace if one is available; only present if there is an error
in the job.

 Type: String

 unit_of_work (readonly)

The amount of work the sub-task of the job that this JobMessage is
related to performed

 Type: String

Licensing

 Examples:

{ "licensing":{

 "device_limit":500,

 "customer_name":"Internal Use Only",

 "enable_events":false

}}

 Chapter 2: REST API

109

Attribute Details

 customer_name (readonly)

Customer name the license is under

 Type: String

 device_limit (readonly)

The maximum number of PDUs the current license allows Power IQ to
manage

 Type: String

 enable_events (readonly)

If set to true, the license allows for collection of events

 Type: Boolean

Outlet

Outlets resources represent outlets associated with a PDU being
managed by Power IQ.

 Examples:

{ "outlets" :

 { "device_id" : null,

 "id" : 17,

 "outlet_id" : 1,

 "outlet_name" : "Outlet_1",

 "pdu_id" : 9, "state" : "ON"

}}

Attribute Details

 device_id

The ID of the device this outlet is associated with.

 Type: Integer

 ordinal (readonly)

Outlet number on the pdu.

 Type: Integer

 outlet_id (readonly) DEPRECATED Use #ordinal instead

Outlet number on the PDU

 Type: Integer

Chapter 2: REST API

110

 outlet_name

The name of the outlet

 Type: String

 pdu_id (readonly)

Note:An EMX is treated the same as a PDU

The ID of the PDU that this resource is associated with

 Type: Integer

 rated_amps (readonly)

The rated_amps in amps.

 Type: Float

 state (readonly)

State of the outlet

 Type: String

 Sample Values: ON, OFF

 Chapter 2: REST API

111

OutletReadings

The OutletReadings view shows the raw power data collected from PDU
outlets. A data record is added for each outlet polled. This data is
summarized hourly in a OutletReadings*Rollup view, and the outlet
records in this view are purged.

 Examples:

{

 "outlet_reading": {

 "id": 5669,

 "pdu_id": 9,

 "outlet_id": 24,

 "reading_time": "2011/10/21 12:11:12 -0400",

 "active_power": 74.0,

 "max_active_power": 74.0,

 "min_active_power": 74.0,

 "apparent_power": 75.0,

 "max_apparent_power": 75.0,

 "min_apparent_power": 75.0,

 "current": 0.60,

 "max_current": 0.60,

 "min_current": 0.60,

 "current_amps": 0.60,

 "max_current_amps": 0.60,

 "min_current_amps": 0.60,

 "unutilized_capacity": 2.8,

 "max_unutilized_capacity": 2.8,

 "min_unutilized_capacity": 2.8,

 "watt_hour": 1593834,

 "voltage": 208.0,

 "max_voltage": 208.0,

 "min_voltage": 208.0

 }

}

Attribute Details

 active_power (readonly)

Active Power drawn by the outlet

 Type: Double

 apparent_power (readonly)

Apparent Power drawn by the outlet

 Type: Double

Chapter 2: REST API

112

 current (readonly)

The current in amps.

 Type: Float

 current_amps (readonly) DEPRECATED Use #current

Amps drawn on the outlet

 Type: Double

 id (readonly)

An automatically generated ID for this resource

 Type: Integer

 max_active_power (readonly)

Maximum Active Power reading at the outlet

 Type: Double

 max_apparent_power (readonly)

Maximum Apparent Power reading at the outlet

 Type: Double

 max_current (readonly)

The max_current in amps.

 Type: Float

 max_current_amps (readonly) DEPRECATED Use #max_current

Maximum current reading (Amps) on the outlet

 Type: Double

 max_voltage (readonly)

Maximum Voltage reading at the outlet

 Type: Double

 max_watt_hour (readonly) DEPRECATED

Maximum Watt Hour reading at the outlet

 Type: Double

 Chapter 2: REST API

113

 min_active_power (readonly)

Minimum Active Power reading at the outlet

 Type: Double

 min_apparent_power (readonly)

Minimum Apparent Power reading at the outlet

 Type: Double

 min_current (readonly)

The min_current field in amps

 Type: Float

 min_current_amps (readonly) DEPRECATED Use #min_current

Minimum current reading (Amps) on the outlet

 Type: Double

 min_power_factor (readonly)

Minimum power factor at the outlet.

 Type: Double

 min_unutilized_capacity (readonly)

The min_unutilized_capacity field

 Type: Float

 min_voltage (readonly)

Minimum Voltage reading at the outlet

 Type: Double

 min_watt_hour (readonly) DEPRECATED

Minimum Watt Hour reading at the outlet

 Type: Double

 outlet_id (readonly)

Outlet number on the PDU

 Type: Integer

Chapter 2: REST API

114

 pdu_id (readonly)

Note:An EMX is treated the same as a PDU

The ID of the PDU that this resource is associated with

 Type: Integer

 power_factor (readonly)

Power factor at the outlet.

 Type: Double

 reading_time (readonly)

The date and time the reading was collected

 Type: String

 Sample Values: "2011/10/07 14:50:01 +0000"

 unutilized_capacity (readonly)

Unutilized capacity (Amps)

 Type: Float

 volt_amp_hour (readonly)

Total volt-amp-hours consumed by the outlet, if available.

 Type: Double

 voltage (readonly)

Voltage reading (Volts) at the outlet

 Type: Double

 watt_hour (readonly)

Watt-hours consumed by the outlet, if available

 Type: Double

 Chapter 2: REST API

115

OutletReadings*Rollup

OutletReadingsHourlyRollup

OutletReadingsDailyRollup

OutletReadingsMonthlyRollup

The OutletReadingsRollup resource summarizes the outlet readings
power data over the rollup interval. The “*” may be replaced with the
string Hourly, Daily, or Monthly. For example,
OutletReadingsHourlyRollup.

Raw data is rolled up every hour, hourly roll-ups are in turn rolled up
once a day, and daily roll-ups are rolled up once a month.

 Examples:

{

 "outlet_reading_hourly_rollup": {

 "average_active_power" : 0.0,

 "average_apparent_power" : 0.0,

 "average_current" : 0.0,

 "average_voltage" : 119.0,

 "id" : 1,

 "max_active_power" : 0.0,

 "max_apparent_power" : 0.0,

 "max_current" : 0.0,

 "max_voltage" : 119.0,

 "min_active_power" : 0.0,

 "min_apparent_power" : 0.0,

 "min_current" : 0.0,

 "min_voltage" : 119.0,

 "ordinal" : 44,

 "pdu_id" : 9,

 "reading_time" : "2011/10/20 18:00:00 -0400",

 "watt_hour" : 151007.0

 }

}

Attribute Details

 average_active_power (readonly)

Average Active Power (Watts) reading during rollup interval

 Type: Double

 average_apparent_power (readonly)

Average apparent power (VA) reading during rollup interval

 Type: Double

Chapter 2: REST API

116

 average_current (readonly)

Average current (Amps) reading during rollup interval

 Type: Double

 average_power_factor (readonly)

Average power factor reading during rollup interval.

 Type: Double

 average_unutilized_capacity (readonly)

The average_unutilized_capacity field

 Type: Float

 average_voltage (readonly)

Average Voltage (V) reading during rollup interval

 Type: Double

 id (readonly)

An automatically generated ID for this resource

 Type: Integer

 max_active_power (readonly)

Maximum Active Power (Watts) reading during rollup interval

 Type: Double

 max_apparent_power (readonly)

Maximum apparent power (VA) reading during rollup interval

 Type: Double

 max_current (readonly)

Maximum current (Amps) reading during rollup interval

 Type: Double

 max_power_factor (readonly)

Maximum power factor reading during rollup interval.

 Type: Double

 Chapter 2: REST API

117

 max_unutilized_capacity (readonly)

The max_unutilized_capacity field

 Type: Float

 max_voltage (readonly)

Maximum Voltage (V) reading during rollup interval

 Type: Double

 min_active_power (readonly)

Minimum Active Power (Watts) reading during rollup interval

 Type: Double

 min_apparent_power (readonly)

Minimum apparent power (VA) reading during rollup interval

 Type: Double

 min_current (readonly)

Lowest current (Amps) reading during rollup interval

 Type: Double

 min_power_factor (readonly)

Minimum power factor at the outlet.

 Type: Double

 min_unutilized_capacity (readonly)

The min_unutilized_capacity field

 Type: Float

 min_voltage (readonly)

Minimum Voltage (V) reading during rollup interval

 Type: Double

 outlet_id (readonly)

Outlet number on the PDU

 Type: Integer

Chapter 2: REST API

118

 pdu_id (readonly)

Note: An EMX is treated the same as a PDU

The ID of the PDU that this resource is associated with

 Type: Integer

 reading_time (readonly)

The date and time the reading was collected

 Type: String

 Sample Values: "2011/10/07 14:50:01 +0000"

 volt_amp_hour (readonly)

Total volt-amp-hours consumed by the outlet, if available.

 Type: Double

 rollup_interval (readonly)

The frequency that raw readings are rolled up into this representation

 Type: Integer

 Sample Values: 1 = one hour, 2 = one day, 3 = one month

 watt_hour (readonly)

Watt Hour reading during rollup interval

 Type: Double

 Chapter 2: REST API

119

Pdu

The PDU resource describes a single PDU being managed by Power IQ.

 Examples:

{

 "pdu": {

 "type": "FloorPdu",

 "caption": "36OutletPX2",

 "configured_inlet_voltage": null,

 "configured_outlet_voltage": null,

 "contact": "Mike Davidson",

 "custom_field_1": null,

 "custom_field_2": null,

 "default_connected_led_color": "3366ff",

 "default_disconnected_led_color": "ffff00",

 "description": "PX 020106",

 "dynamic_plugin_name": null,

 "external_key": "192.168.43.117",

 "firmware_version": "2.1.6.5-26030",

 "health": {

 "active_events_count": 0,

 "connectivity": "OK",

 "connectivity_explanation": "Most recent poll of the

target PDU was successful.",

 "events": "Good",

 "overall": "Good"

 },

 "manufacturer": "Raritan",

 "model": "PX2-5704U",

 "name": "36OutletPX2",

 "phase": "THREE_PHASE",

 "poller_plugin":

"com.raritan.polaris.plugins.pdu.raritan.px2.PduPolle

r",

 "proxy_index": null,

 "rated_amps": "24A",

 "rated_va": "15.0-17.3kVA",

 "rated_volts": "360-415V",

 "reading": { ... },

 "requires_manual_voltage": false,

 "serial_number": null,

 "snmp3_auth_level": null,

 "snmp3_enabled": false,

 "snmp3_user": null,

 "supports_bulk_configuration": false,

 "supports_data_logging": true,

 "supports_firmware_upgrades": true,

 "supports_outlet_power_control": true,

 "supports_outlet_renaming": true,

 "supports_readingsonly_poll": true,

Chapter 2: REST API

120

 "supports_sensor_renaming": true,

 "supports_single_sign_on": true,

 "user_defined_phase": false

 }

}

Attribute Details

 type (readonly)

Type of PDU: FloorPdu, RackPdu, FloorUps, Crac, PowerPanel,
StandaloneMeter

 Type: String

 caption (readonly)

PDU Name

 Type: String

 contact (readonly)

Contact name

 Type: String

 default_connected_led_color

Default LED color when in connected state in hexadecimal RGB.

 Type: String

 Sample Values: "FF0000"

 default_disconnected_led_color

Default LED color when in disconnected state in hexadecimal RGB.

 Type: String

 Sample Values: "FF0000"

 description (readonly)

MIB II SysDescr

 Type: String

 dynamic_plugin_name (readonly)

Name of the dynamic plugin, if any, being used by the PDU

 Type: String

 Chapter 2: REST API

121

 external_key

Note: External key is a unique string that identifies PDU's being
managed by Power IQ. If left blank Power IQ assigns a default external
key to each PDU

The external key that identifies the PDU.

 Type: String

 firmware_version (readonly)

PDU Firmware Version

 Type: String

 health (readonly)

PDU overall health status: Good, Warning, or Critical

 Type: String

 id (readonly)

An automatically generated ID for this resource

 Type: Integer

 inline_meter (readonly)

Indicates if the PDU is an inline meter

 Type: Boolean

 ip_address (readonly)

IP Address

 Type: String

 ipmi_username

The username of the user used to log into the Web UI of the PDU if it is a
Raritan PDU

 Type: String

 Invisible and writable

 ipmi_password

The password of the user used to log into the Web UI of the PDU if it is a
Raritan PDU

 Type: String

 Invisible and writable

Chapter 2: REST API

122

 location (readonly)

MIB II SysLocation

 Type: Location

 manufacturer (readonly)

PDU Manufacturer

 Type: String

 model (readonly)

PDU Model

 Type: String

 name (readonly)

Name of the PDU

 Type: String

 phase (readonly)

Number of phases in the PDU: SINGLE_PHASE or THREE_PHASE

 Type: String

 proxy_index (readonly)

Subtending unit ID applicable only to daisy-chained and console server
connected PDU units

 Type: Integer

 rated_amps (readonly)

Rated Amps (A) on the PDU

 Type: Double

 rated_va (readonly)

Rated Volts (V) on the PDU

 Type: Double

 rated_volts (readonly)

The Rated Volts (V) on the PDU

 Type: Double

 Chapter 2: REST API

123

 reading (readonly)

The latest reading associated with the outlet.

 Type: Object

 requires_manual_voltage (readonly)

Indicates whether a PDU requires manual voltage

 Type: Boolean

 serial_number (readonly)

PDU Serial Number

 Type: String

 snmp3_auth_level

The snmp3_auth_level field

 Type: Integer

 snmp3_enabled

Indicates SNMP version 3 is enabled on the PDU.

 Type: Boolean

 supports_bulk_configuration (readonly)

Indicates whether the PDU supports bulk configuration

 Type: Boolean

 supports_data_logging (readonly)

Indicates whether the PDU supports data logging

 Type: Boolean

 supports_firmware_upgrades (readonly)

Indicates whether the PDU supports firmware upgrades

 Type: Boolean

 supports_outlet_power_control (readonly)

Indicates if a PDU supports outlet power control

 Type: Boolean

Chapter 2: REST API

124

 supports_outlet_renaming (readonly)

Indicates if the PDU allows its outlets to be renamed

 Type: Boolean

 supports_readingsonly_poll (readonly)

Indicates whether the PDU supports resadings only poll

 Type: Boolean

 supports_sensor_renaming (readonly)

Indicates whether the PDU allows sensors to be renamed

 Type: Boolean

 supports_single_sign_on (readonly)

Indicates whether the PDU supports single sign on

 Type: Boolean

 user_defined_phase (readonly)

User defined phase value

 Type: Integer

Rack

Physical Rack in a data center. Part of the data center hierarchy that can
be used to model your site.

 Examples:

{"rack" : {

 "id" : 2,

 "name" :"Rack 2",

 "external_key" :"Rack -- 2",

 "capacity" :1.0

 }}

Attribute Details

 capacity

User-defined power capacity in kW

 Type: Double

 Sample Values:1.0

 Chapter 2: REST API

125

 external_key

A code used to uniquely identify this resource

 Type: String

 id (readonly)

An automatically generated ID for this resource

 Type: Integer

 name

The name of the resource

 Type: String

 space_id

The space_id field.

 Type: String

RackUnit

RackUnit attached to an AssetStrip, that is being managed by Power IQ.

 Examples:

{"rack_unit": {

 "id":1,

 "asset_strip_id":1,

 "tag_id":"000013DBDA6F",

 "ordinal":1,

 "led_state":"on",

 "led_mode":"automatic",

 "led_color":"ff0000",

 "created_at":"2011/10/07 14:50:01 +0000",

 "updated_at":"2011/10/07 14:50:01 +0000"

 }

}

Attribute Details

 asset_strip_id (readonly)

The AssetStrip this RackUnit is associated with

 Type: Integer

Chapter 2: REST API

126

 blade_extension_size (readonly)

The size of the blade extension if it exists.

 Type: Integer

 created_at (readonly)

The date and time this resource was created

 Type: String

 Sample Values: "2011/10/07 14:50:00 +0000"

 id (readonly)

An automatically generated ID for this resource

 Type: Integer

 led_color

The color of a RackUnit LED connected to the AssetStrip, in
hexadecimal RGB.

 Type: String

 Sample Values: "FF0000"

 led_mode

The mode the LED is operating in

 Type: String

 Sample Values: automatic, manual

 led_state

The state the LED is operating in

 Type: String

 Sample Values: on, off, blinking, slow_blinking

 name

The name of the resource.

 Type: String

 ordinal (readonly)

The position that this RackUnit resource occupies in the AssetStrip

 Type: Integer

 Chapter 2: REST API

127

 rack_unit_position (readonly)

The position that this RackUnit resource claims to occupy in the
AssetStrip.

 Type: Integer

 rack_unit_type

The type of rack unit.

 Type: String

 Sample Values: single, blade

 tag_family

The tag family string of the rack unit.

 Type: String

 tag_id (readonly)

Unique id of the attached asset tag that is plugged into this asset strip.
The tag_id is built directly into the hardware of the asset tag.

 Type: String

 updated_at (readonly)

Note: The timezone for all date and time fields is always UTC (+0000).
Time granularity is returned in seconds but internally stored to the usec.
Be aware of this when performing searches against particular times.

 Type: String

 Sample Values: "2011/10/07 14:50:01 +0000"

Room

Physical Room in a data center. Part of the data center hierarchy that
can be used to model your site.

Examples:

{"room" : {

 "id" : 2,

 "name" :"Room 2",

 "external_key" :"Room -- 2",

 "capacity" :1.0

}}

Chapter 2: REST API

128

Attribute Details

 capacity

User-defined power capacity in kW

 Type: Double

 Sample Values: .0

 external_key

A code used to uniquely identify this resource

 Type: String

 id (readonly)

An automatically generated ID for this resource

 Type: Integer

 name

The name of the resource

 Type: String

Row

Physical Row in a data center. Part of the data center hierarchy that can
be used to model your site.

 Examples:

{"row" : {

 "id" : 2,

 "name" :"Row 2",

 "external_key" :"Row -- 2",

 "capacity" :1.0

}}

Attribute Details

 capacity

User-defined power capacity in kW

 Type: Double

 Sample Values: .0

 Chapter 2: REST API

129

 external_key

A code used to uniquely identify this resource

 Type: String

 id (readonly)

An automatically generated ID for this resource

 Type: Integer

 name

The name of the resource

 Type: String

Sensor

A Sensor is attached to a PDU being managed by Power IQ.

 Examples:

{"sensor":

 {

 "id":10,

 "pdu_id":28,

 "type":"HumiditySensor",

 "label":"H6_45.246",

 "removed":null,

 "position":"INLET",

 "reading":{},

 "state":{}

 }

}

Attribute Details

 type (readonly)

The type of sensor

 Type: String

 id (readonly)

An automatically generated ID for this resource

 Type: Integer

Chapter 2: REST API

130

 label (readonly)

Sensor's label as gathered from the PDU

 Type: String

 ordinal (readonly)

Position of the sensor on the PDU, as gathered from the PDU.

 Type: Integer

 pdu_id (readonly)

Note: An EMX is treated the same as a PDU

The ID of the PDU that this resource is associated with

 Type: Integer

 pdu_sensor_id (readonly) DEPRECATED

Physical ID of the sensor on the PDU, as gathered from the pdu

 Type: Integer

 position (readonly)

Sensor's position

 Type: String

 Sample Values: INLET, OUTLET, EXTERNAL

 reading (readonly)

The reading field

 Type: Hash

 removed (readonly)

When the sensor was removed from the system (always null for current
sensors)

 Type: String

 state (readonly)

The reading field

 Type: Hash

 Chapter 2: REST API

131

SensorReadings

Note: SensorReadings are periodically purged from the system

The SensorReadings are created from the data collected from PDU
sensors. A data record is added for each sensor polled. This data is
summarized in the SensorReadingsRollup resource.

 Examples:

{"sensor_reading":

 {

 "id":4950,

 "reading_time":"2011/10/19 14:39:34 +0000",

 "value":44.0,

 "sensor_id":3,

 "max_value":null,

 "min_value":null,

 "uom":"%"

 }

}

Attribute Details

 id (readonly)

An automatically generated ID for this resource

 Type: Integer

 max_value (readonly)

The max_value field

 Type: Float

 min_value (readonly)

The min_value field

 Type: Float

 reading_time (readonly)

The date and time the reading was collected

 Type: String

 Sample Values: "2011/10/07 14:50:01 +0000"

 sensor_id (readonly)

The ID of the sensor that this resource is associated with

 Type: Integer

Chapter 2: REST API

132

 uom (readonly)

The unit of measure used by the system when calculating reading values
return

 Type: String

 value (readonly)

The value field

 Type: String

SensorReadings*Rollups

SensorReadings*Rollup summarize the sensor readings power data over
the rollup interval. The “*” may be replaced with the string Hourly, Daily,
or Monthly. For example, SensorReadingsHourlyRollup.

Raw data is rolled up every hour, hourly roll-ups are in turn rolled up
once a day, and daily roll-ups are rolled up once a month.

 Examples:

{

 "sensor_reading_hourly_rollup": {

 "id": 1,

 "rollup_interval": 1,

 "reading_time": "2011/10/07 14:00:00 +0000",

 "min_value": 31.0,

 "max_value": 31.0,

 "average_value": 31.0,

 "sensor_id": 45

 }

}

Attribute Details

 average_value (readonly)

The average_value field

 Type: Float

 id (readonly)

An automatically generated ID for this resource

 Type: Integer

 Chapter 2: REST API

133

 max_value (readonly)

The max_value field

 Type: Float

 min_value (readonly)

The min_value field

 Type: Float

 reading_time (readonly)

The date and time the reading was collected

 Type: String

 Sample Values: "2011/10/07 14:50:01 +0000"

 sensor_id (readonly)

The ID of the sensor that this resource is associated with

 Type: Integer

Chapter 2: REST API

134

SystemInfo

SystemInfo displays the settings for Power IQ (which can only be set in
the UI), as well as version and licensing information.

 Examples:

{"system_info":{

 "poweriq_version":"3.1.0-15",

 "uuid":"f24a8aa6-4c0f-4afd-bbaf-e527bea737c0",

 "current_time":"2011/10/19 15:39:45 +0000",

 "svn_branch":"trunk",

 "configuration":{

 "login_header":"Unauthorized Access Warning",

 "login_body":"Access to this computer is prohibited

unless authorized.
Accessing programs or data

unrelated to your job is prohibited.",

 "session_timeout":30,

 "px_minimum_version":"1.1.0-6684",

 "site_locale":"en-US",

 "eula_accepted":true,

 "sso_enabled":false,

 "ntp_enabled":false,

 "time_zone":"UTC",

 "time_zone_offset":0,

 "temperature_unit":"C",

 "currency":"$",

 "data_center_custom_field_1":"Custom Field 1",

 "data_center_custom_field_2":"Custom Field 2",

 "device_custom_field_1":"Custom Field 1",

 "device_custom_field_2":"Custom Field 2",

 "snmp_version":"1/2c",

 "enable_power_control":false,

 "require_power_control_audit_message":false,

 "enable_browser_power_control":false,

 "enable_scheduled_power_control":false,

 "enable_web_api":false,

 "enable_event_notifications":false,

 "smtp_server":null, "smtp_port":null,

 "smtp_auth_type":null,

 "smtp_username":null,

 "from_email":null,

 "smtp_encryption_method":"NONE",

 "pdu_label":"IP_ADDRESS",

 "password_min_length":8,

 "password_max_length":40,

 "password_requires_one_lowercase":true,

 "password_requires_one_uppercase":true,

 "password_requires_one_numeric":true,

 "password_requires_one_special":true,

 "enable_web_api_user":false,

 Chapter 2: REST API

135

 "enable_custom_logo":false,

 "allow_html_portlets":false,

 "browser_session_polling_interval":300,

 "remote_storage_enabled":false,

 "remote_storage_protocol":null,

 "remote_storage_host":null,

 "remote_storage_port":null,

 "remote_storage_ftp_user":null,

 "remote_storage_directory":null,

 "remote_storage_s3_ssl_only":true,

 "remote_storage_push_csv":false,

 "remote_storage_push_backup":true,

 "pdu_custom_field_1":"Custom Field 1",

 "pdu_custom_field_2":"Custom Field 2"

 },

 "licensing":{

 "device_limit":500,

 "customer_name":"Internal Use Only",

 "enable_events":false

 }

}}

Attribute Details

 configuration (readonly)

Configuration information for Power IQ. The configuration is can only be
set via the Power IQ UI

 Type: Configuration)

 current_time (readonly)

The current time configured on Power IQ

 Type: String

 Sample Values: "2011/10/07 14:50:00 +0000"

 licensing (readonly)

Licensing information

 Type: Licensing

 poweriq_version (readonly)

The version of Power IQ that is running

 Type: String

Chapter 2: REST API

136

 uuid (readonly)

A UUID assigned to this instance of Power IQ

 Type: String

Addendum B: Route Reference

The following table is a synopsis of the available URLs and methods
available for all the resources in Power IQ in alphabetical order.

Method Route Deprecated?

GET /api/v2/aisles

POST /api/v2/aisles

GET /api/v2/aisles/:id/parent

GET /api/v2/aisles/:id/siblings

GET /api/v2/aisles/:id/children

GET /api/v2/aisles/:id/descendants

GET /api/v2/aisles/:id

PUT /api/v2/aisles/:id

DELETE /api/v2/aisles/:id

PUT /api/v2/aisles/:id/move_to

POST /api/v2/aisles/:id/power_control

GET /api/v2/asset_strips/:asset_strip_id/rack_units

GET /api/v2/asset_strips

GET /api/v2/asset_strips/:id

PUT /api/v2/asset_strips/:id

GET /api/v2/circuits

PUT /api/v2/circuits/:id/

GET /api/v2/circuits/:id/readings

GET /api/v2/circuits/:id/readings_rollups/hourly

GET /api/v2/circuits/:id/readings_rollups/daily

GET /api/v2/circuits/:id/readings_rollups/monthly

 Chapter 2: REST API

137

GET /api/v2/circuit_breaker_readings

GET /api/v2/circuit_breaker_readings_rollups/ DEPRECATED

GET /api/v2/circuit_breaker_readings_rollups/hourly

GET /api/v2/circuit_breaker_readings_rollups/daily

GET /api/v2/circuit_breaker_readings_rollups/monthly

GET /api/v2/circuit_poles

GET /api/v2/circuit_poles/:id/readings

GET /api/v2/circuit_poles/:id/readings_rollups/hourly

GET /api/v2/circuit_poles/:id/readings_rollups/daily

GET /api/v2/circuit_poles/:id/readings_rollups/monthly

GET /api/v2/data_centers

POST /api/v2/data_centers

GET /api/v2/data_centers/:id/children

GET /api/v2/data_centers/:id/siblings

GET /api/v2/data_centers/:id/descendants

GET /api/v2/data_centers/:id

PUT /api/v2/data_centers/:id

DELETE /api/v2/data_centers/:id

PUT /api/v2/data_centers/:id/move_to

GET /api/v2/devices/:device_id/outlets

GET /api/v2/devices

POST /api/v2/devices

GET /api/v2/devices/:id

PUT /api/v2/devices/:id

DELETE /api/v2/devices/:id

PUT /api/v2/devices/:id/move_to

POST /api/v2/devices/:id/power_control

GET /api/v2/devices/:id/parent

GET /api/v2/devices/:id/children

GET /api/v2/devices/:id/siblings

Chapter 2: REST API

138

GET /api/v2/devices/:id/descendents

POST /api/v2/device_groups/power_control

PUT /api/v2/events/clear_batch

GET /api/v2/events

PUT /api/v2/events/:id/clear

GET /api/v2/events/:id

GET /api/v2/floors

POST /api/v2/floors

GET /api/v2/floors/:id/parent

GET /api/v2/floors/:id/children

GET /api/v2/floors/:id/siblings

GET /api/v2/floors/:id/descendants

GET /api/v2/floors/:id

PUT /api/v2/floors/:id

DELETE /api/v2/floors/:id

PUT /api/v2/floors/:id/move_to

GET /api/v2/inlets

GET /api/v2/inlets/:id/inlet_poles

GET /api/v2/inlets/:id/readings

GET /api/v2/inlets/:id/readings_rollups/hourly

GET /api/v2/inlets/:id/readings_rollups/daily

GET /api/v2/inlets/:id/readings_rollups/monthly

GET /api/v2/inlet_readings

GET /api/v2/inlet_readings_rollups/hourly

GET /api/v2/inlet_readings_rollups/daily

GET /api/v2/inlet_readings_rollups/monthly

 Chapter 2: REST API

139

GET /api/v2/inlet_pole_readings

GET /api/v2/inlet_pole_readings_rollups/hourly

GET /api/v2/inlet_pole_readings_rollups/daily

GET /api/v2/inlet_pole_readings_rollups/monthly

GET /api/v2/inlet_poles

GET /api/v2/inlet_poles/:id/readings

GET /api/v2/inlet_poles/:id/readings_rollups/hourly

GET /api/v2/inlet_poles/:id/readings_rollups/daily

GET /api/v2/inlet_poles/:id/readings_rollups/monthly

GET /api/v2/job_messages

GET /api/v2/job_messages/:id

GET /api/v2/jobs/:id

GET /api/v2/jobs/:job_id/messages

GET /api/v2/outlet_readings

GET /api/v2/outlet_readings_rollups DEPRECATED

GET /api/v2/outlet_readings_rollups/hourly

GET /api/v2/outlet_readings_rollups/daily

GET /api/v2/outlet_readings_rollups/monthly

GET /api/v2/outlets

GET /api/v2/outlets/:id

PUT /api/v2/outlets/:id

GET /api/v2/outlets/:outlet_id/readings

GET /api/v2/outlets/:outlet_id/readings_rollups DEPRECATED

GET /api/v2/outlets/:outlet_id/readings_rollups/hourly

GET /api/v2/outlets/:outlet_id/readings_rollups/daily

GET /api/v2/outlets/:outlet_id/readings_rollups/monthly

GET /api/v2/outlets/:outlet_id/events

POST /api/v2/outlets/power_control

PUT /api/v2/outlets/rename_batch

Chapter 2: REST API

140

GET /api/v2/panels

GET /api/v2/panels/:id/inlets

GET /api/v2/panels/:id/circuits

GET /api/v2/panels/:id/circuit_poles

POST /api/v2/pdus/create_batch

DELETE /api/v2/pdus/destroy_batch

GET /api/v2/pdus

POST /api/v2/pdus

GET /api/v2/pdus/:id

PUT /api/v2/pdus/:id

DELETE /api/v2/pdus/:id

GET /api/v2/pdus/:id/parent

GET /api/v2/pdus/:id/siblings

GET /api/v2/pdus/:id/inlets

PUT /api/v2/pdus/:id/move_to

PUT /api/v2/pdus/:id/rescan

GET /api/v2/pdus/:id/panels

GET /api/v2/pdus/:id/circuits

GET /api/v2/pdus/:id/circuit_poles

GET /api/v2/pdus/:pdu_id/asset_strips

GET /api/v2/pdus/:pdu_id/events

GET /api/v2/pdus/:pdu_id/outlets

GET /api/v2/pdus/:pdu_id/sensors

POST /api/v2/pdus/update_ip_addresses

GET /api/v2/racks

POST /api/v2/racks

GET /api/v2/racks/:id/parent

GET /api/v2/racks/:id/children

 Chapter 2: REST API

141

GET /api/v2/racks/:id/siblings

GET /api/v2/racks/:id/descendants

GET /api/v2/racks/:id

PUT /api/v2/racks/:id

DELETE /api/v2/racks/:id

PUT /api/v2/racks/:id/move_to

POST /api/v2/racks/:id/power_control

GET /api/v2/rack_units

GET /api/v2/rack_units/:id

PUT /api/v2/rack_units/:id

GET /api/v2/rooms

POST /api/v2/rooms

GET /api/v2/rooms/:id/parent

GET /api/v2/rooms/:id/children

GET /api/v2/rooms/:id/siblings

GET /api/v2/rooms/:id/descendants

GET /api/v2/rooms/:id

PUT /api/v2/rooms/:id

DELETE /api/v2/rooms/:id

PUT /api/v2/rooms/:id/move_to

POST /api/v2/rooms/:id/power_control

GET /api/v2/rows

POST /api/v2/rows

GET /api/v2/rows/:id/parent

GET /api/v2/rows/:id/children

GET /api/v2/rows/:id/siblings

GET /api/v2/rows/:id/descendants

GET /api/v2/rows/:id

PUT /api/v2/rows/:id

DELETE /api/v2/rows/:id

Chapter 2: REST API

142

PUT /api/v2/rows/:id/move_to

POST /api/v2/rows/:id/power_control

GET /api/v2/sensor_readings

GET /api/v2/sensor_readings_rollups

GET /api/v2/sensor_readings_rollups/hourly

GET /api/v2/sensor_readings_rollups/daily

GET /api/v2/sensor_readings_rollups/monthly

GET /api/v2/sensors

GET /api/v2/sensors/:id

GET /api/v2/sensors/:id/parent

GET /api/v2/sensors/:id/siblings

GET /api/v2/sensors/:sensor_id/events

GET /api/v2/sensors/:sensor_id/readings

GET /api/v2/sensors/:sensor_id/readings_rollups DEPRECATED

GET /api/v2/sensors/:sensor_id/readings_rollups/hourl
y

GET /api/v2/sensors/:sensor_id/readings_rollups/daily

GET /api/v2/sensors/:sensor_id/readings_rollups/mont
hly

GET /api/v2/system_info

 Chapter 2: REST API

143

Addendum C: Searching Reference

Many of the resources provided in the Power IQ REST API provide
searching capabilities. For an understanding of which resources have
searching capabilities, see the API section of this document. Most
resources allow for searching.

Searching is performed by passing in modified parameters to the request.
Most resources allow for searching, but searching can only be applied to
the listing/index route. For example, to perform a search on the event
resource, this route must be used:

GET /api/v2/events

Searching works by creating URL parameter strings that are a
combination of the resource field name with various modifiers appended
to it. Combining multiple parameters together is effectively performing an
AND on the search.

 Example 1

Retrieve all events for the PDU with an ID of 50:

GET /api/v2/events?pdu_id_eq=50

In the example above:

pdu_id is a valid field in the events resource

_eq is a valid search modifier

50 is the input to the query, the ID of the PDU

 Example 2

Retrieve all events for the PDU with an ID of 50, that occurred on or after
2011/10/19 14:00:00:

GET

/api/v2/events?pdu_id_eq=50&created_at_gt=2011/10/19%2014:00:00

In the example above:

created_at is a valid field in the events resource

_gt is a valid search modifier

2011/10/19%2014:00:00 is the input to the query (url encoded)

 Example 3

Retrieve all events with an event_config_id of 72 or 62:

GET

/api/v2/events?event_config_id_in[]=72&event_config_id_in[]=62

In the example above:

Chapter 2: REST API

144

event_config_id is a valid field in the events resource

_in is a valid search modifier

[] create an array so that multiple inputs can be used for the same
parameter

62,72 is the input to the query

 Chapter 2: REST API

145

Modifiers

The section below lists all the modifiers supported for generating url
queries. Note that the modifiers depend on the field type.

 All data types

equals (alias: eq) - Just as it sounds.

does_not_equal (aliases: ne, noteq) - The opposite of equals, oddly
enough.

in - Takes an array, matches on equality with any of the items in the
array.

not_in (aliases: ni, notin) - Like above, but negated.

is_null - The column has an SQL NULL value.

is_not_null - The column contains anything but NULL.

 Strings

contains (aliases: like, matches) - Substring match.

does_not_contain (aliases: nlike, nmatches) - Negative substring match.

starts_with (alias: sw) - Match strings beginning with the entered term.

does_not_start_with (alias: dnsw) - The opposite of above.

ends_with (alias: ew) - Match strings ending with the entered term.

does_not_end_with (alias: dnew) - Negative of above.

 Numbers, dates, and times

greater_than (alias: gt) - Greater than.

greater_than_or_equal_to (aliases: gte, gteq) - Greater than or equal to.

less_than (alias: lt) - Less than.

less_than_or_equal_to (aliases: lte, lteq) - Less than or equal to.

 Booleans

is_true - Is true

is_false - The complement of is_true.

 Non-boolean

is_present - Not NULL or the empty string.

is_blank - Returns values where the fields is NULL or the empty string.

Chapter 2: REST API

146

Limiting and Ordering Search Results

You can limit and order your search results using these parameters.

"[attribute name].[direction]"

The direction is either "asc" or "desc", and "asc" is the default.

 Examples:

order=ordinal

order=name.asc

order=reading_time.desc

 Example - Return the latest reading for inlet 17

GET

/api/v2/inlets/17/readings?order=reading_time.desc&li

mit=1

Addendum D: Asynchronous Modes

Some actions on resources, by their nature, take an extended period of
time to complete. In cases where an action requires a long time to
complete, that action can optionally (or in some cases required to) be
executed asynchronously.

Job resources are used to handle long running requests that either must
be, or can optionally be, executed asynchronously. An action on any
resource will return a job resource instead of the usuall representation of
itself, if it supports the async parameter.

For an understanding of which resources and actions support or require
asynchronous execution, see the API section of this document.

Some resource actions will always be run asynchronously, and will be
noted as such.

Addendum E: Response Codes

CODE INTERPRETATION

200 (ok) Everything worked as expected

400 (bad request) Usually missing or invalid parameters or body
content in request, or failure to set Content-Type
and Accept headers to application/json.

 Chapter 2: REST API

147

401 (unauthorized) No valid authentication provide, or
authentication provided does not grant access to
the requested resource

404 (not found) The requested resource and or action does not
exist

406 (unacceptable) Usually indicates a request that does not set the
Content-Type to application/json, or a request
for a resource in a format that is not supported,
such as xml or html.

422 (unprocessable entity) Usually indicates that an asynchronous request
failed

500 (internal server error) Something went wrong on the Power IQ server

149

A

Addendum A
Resource Reference • 13, 14, 16, 19, 20,

24, 36, 39, 53
Addendum B

Route Reference • 136
Addendum C

Searching Reference • 19, 20, 24, 36, 39,
143

Addendum D
Asynchronous Modes • 146

Addendum E
Response Codes • 14, 17, 146

Aisle • 54, 55
API • 16
Asset Strip Management • 16, 35
AssetStrip • 54, 56
Attribute Details • 55, 56, 59, 60, 62, 66, 70,

72, 73, 80, 83, 84, 85, 88, 90, 91, 92, 96, 98,
102, 105, 107, 109, 111, 115, 120, 124, 125,
128, 129, 131, 132, 135

B

Blade_Slot • 54, 58

C

Circuit • 54, 60
CircuitBreakerReadings • 54, 70
CircuitBreakerReadings*Rollup • 54, 71
CircuitReading • 62
CircuitReadings*Rollup • 66
Configuration • 54, 73

D

Data Center Hierarchy • 16, 28
DataCenter • 54, 79
Deprecations • 12
Device • 54, 82
Device Groups • 54, 84

E

Errors • 17
Event • 54, 85
Event Management • 16, 20

F

Floor • 54, 88
Functional Areas • 16

G

Guidance for Customers Upgrading from
Previous Releases • 5

Guidance for Line Readings in 4.0 and Later •
6, 10

Guidance for Monthly, Daily, and Hourly
Rollups in 4.0 and Later • 6, 11

Guidance for PDU Readings in 4.0 and Later •
6, 7

I

Inlet • 54, 89
Inlet Pole • 54, 91
InletPoleReading • 54, 92
InletPoleReading*Rollup • 54, 95
InletReading • 54, 90, 98
InletReading*Rollup • 54, 101
Introduction to the Power IQ API • 4

J

Job • 54, 105
Job Management • 16, 18
JobMessage • 54, 107

L

Licensing • 54, 108
Limiting and Ordering Search Results • 146

M

Misc • 16, 52
Modifiers • 145
Modules • 54

O

Outlet • 54, 109
Outlet Management • 16, 22
OutletReadings • 54, 111
OutletReadings*Rollup • 54, 115

P

Pdu • 54, 119
PDU Management • 16, 37

Index

Index

150

POST /api/v2/pdus/update_ip_addresses -
Notes and Errors • 47, 48

Power and sensor readings • 16, 49
Power Control • 16, 50

R

Rack • 54, 124
RackUnit • 54, 125
Requests • 14
Responses • 14
REST API • 13
Room • 54, 127
Row • 54, 128

S

Security • 13
Sensor • 54, 129
SensorReadings • 54, 131
SensorReadings*Rollups • 54, 132
SystemInfo • 54, 134

T

Testing • 15

 U.S./Canada/Latin America
Monday - Friday
8 a.m. - 6 p.m. ET
Phone: 800-724-8090 or 732-764-8886
For CommandCenter NOC: Press 6, then Press 1
For CommandCenter Secure Gateway: Press 6, then Press 2
Fax: 732-764-8887
Email for CommandCenter NOC: tech-ccnoc@raritan.com
Email for all other products: tech@raritan.com

 China

Beijing
Monday - Friday
9 a.m. - 6 p.m. local time
Phone: +86-10-88091890

Shanghai
Monday - Friday
9 a.m. - 6 p.m. local time
Phone: +86-21-5425-2499

GuangZhou
Monday - Friday
9 a.m. - 6 p.m. local time
Phone: +86-20-8755-5561

 India
Monday - Friday
9 a.m. - 6 p.m. local time
Phone: +91-124-410-7881

 Japan
Monday - Friday
9:30 a.m. - 5:30 p.m. local time
Phone: +81-3-5795-3170
Email: support.japan@raritan.com

 Europe

Europe
Monday - Friday
8:30 a.m. - 5 p.m. GMT+1 CET
Phone: +31-10-2844040
Email: tech.europe@raritan.com

United Kingdom
Monday - Friday
8:30 a.m. to 5 p.m. GMT
Phone +44(0)20-7090-1390

France
Monday - Friday
8:30 a.m. - 5 p.m. GMT+1 CET
Phone: +33-1-47-56-20-39

Germany
Monday - Friday
8:30 a.m. - 5:30 p.m. GMT+1 CET
Phone: +49-20-17-47-98-0
Email: rg-support@raritan.com

 Melbourne, Australia
Monday - Friday
9:00 a.m. - 6 p.m. local time
Phone: +61-3-9866-6887

 Taiwan
Monday - Friday
9 a.m. - 6 p.m. GMT -5 Standard -4 Daylight
Phone: +886-2-8919-1333
Email: support.apac@raritan.com

	Introduction to the Power IQ API
	Guidance for Customers Upgrading from Previous Releases
	Guidance for PDU Readings in 4.0 and Later
	Guidance for Line Readings in 4.0 and Later
	Guidance for Monthly, Daily, and Hourly Rollups in 4.0 and Later

	Deprecations

	REST API
	Security
	Requests
	Responses
	Testing
	Functional Areas
	API
	Errors
	Job Management
	GET /api/v2/jobs/:id
	Parameters
	GET /api/v2/jobs/:job_id/messages
	Parameters
	GET /api/v2/job_messages/:id
	Parameters
	GET /api/v2/job_messages
	Parameters

	Event Management
	GET /api/v2/events/:id
	Parameters
	GET /api/v2/events
	Parameters
	PUT /api/v2/events/clear_batch
	PUT /api/v2/events/:id/clear
	Parameters

	Outlet Management
	Route Reference
	GET /api/v2/outlets/:id
	Parameters
	GET /api/v2/outlets
	Parameters
	PUT /api/v2/outlets/:id
	Parameters
	PUT /api/v2/outlets/rename_batch
	Parameters
	GET /api/v2/outlets/:outlet_id/events
	Parameters
	GET /api/v2/outlets/:outlet_id/readings
	Parameters
	GET /api/v2/outlets/:outlet_id/readings_rollups/:rollup_interval
	Parameters

	Data Center Hierarchy
	GET /api/v2/:resource/:id
	Parameters
	PUT /api/v2/:resource/:id
	Parameters
	DELETE /api/v2/:resource/:id
	Parameters
	POST /api/v2/:resource
	Parameters
	GET /api/v2/:resource
	Parameters
	GET /api/v2/:resource/:id/parent
	Parameters
	GET /api/v2/:resource/:id/children
	Parameters
	GET /api/v2/:resource/:id/descendants
	Parameters
	GET /api/v2/:resource/:id/siblings
	Parameters
	PUT /api/v2/:resource/:id/move_to
	Parameters
	GET /api/v2/device/:device_id/outlets
	Parameters

	Asset Strip Management
	GET /api/v2/asset_strips/:id
	Parameters
	PUT /api/v2/asset_strips/:id
	Parameters
	GET /api/v2/asset_strips/:asset_strip_id/rack_units
	Parameters
	GET /api/v2/asset_strips
	Parameters
	GET /api/v2/rack_units/:id
	Parameters
	PUT /api/v2/rack_units/:id
	Parameters
	GET /api/v2/rack_units
	Parameters
	GET /api/v2/rack_units/:id/blade_slots
	Parameters
	GET /api/v2/blade_slots
	Parameters
	GET /api/v2/blade_slots/:id

	PDU Management
	GET /api/v2/pdus
	Parameters
	POST /api/v2/pdus
	GET /api/v2/pdus/:id
	Parameters
	PUT /api/v2/pdus/:id
	Parameters
	DELETE /api/v2/pdus/:id
	Parameters
	GET /api/v2/pdus/:id/inlets
	Parameters
	PUT /api/v2/pdus/:id/rescan
	Parameters
	PUT /api/v2/pdus/:id/move_to
	Parameters
	POST /api/v2/pdus/create_batch
	DELETE /api/v2/pdus/destroy_batch
	GET /api/v2/pdus/:id/sensors
	Parameters
	GET /api/v2/pdus/:id/outlets
	Parameters
	GET /api/v2/pdus/:id/asset_strips
	Parameters
	GET /api/v2/pdus/:pdu_id/circuits
	Parameters
	GET /api/v2/pdus/:pdu_id/circuit_poles
	Parameters
	GET /api/v2/pdus/:pdu_id/panels
	Parameters
	GET /api/v2/pdus/:id/events
	Parameters
	POST /api/v2/pdus/update_ip_addresses
	POST /api/v2/pdus/update_ip_addresses - Notes and Errors

	Power and sensor readings
	Power Control
	Misc
	GET /api/v2/system_info

	Addendum A: Resource Reference
	Modules
	Aisle
	Attribute Details

	AssetStrip
	Attribute Details

	Blade_Slot
	Attribute Details

	Circuit
	Attribute Details

	CircuitReading
	Attribute Details

	CircuitReadings*Rollup
	Attribute Details

	CircuitBreakerReadings
	Attribute Details

	CircuitBreakerReadings*Rollup
	Attribute Details

	Configuration
	Attribute Details

	DataCenter
	Attribute Details

	Device
	Attribute Details

	Device Groups
	Attribute Details

	Event
	Attribute Details

	Floor
	Attribute Details

	Inlet
	Attribute Details

	Inlet Pole
	Attribute Details

	InletPoleReading
	Attribute Details

	InletPoleReading*Rollup
	Attribute Details

	InletReading
	Attribute Details

	InletReading*Rollup
	Attribute Details

	Job
	Attribute Details

	JobMessage
	Attribute Details

	Licensing
	Attribute Details

	Outlet
	Attribute Details

	OutletReadings
	Attribute Details

	OutletReadings*Rollup
	Attribute Details

	Pdu
	Attribute Details

	Rack
	Attribute Details

	RackUnit
	Attribute Details

	Room

	Examples:
	Attribute Details
	Row
	Attribute Details

	Sensor
	Attribute Details

	SensorReadings
	Attribute Details

	SensorReadings*Rollups
	Attribute Details

	SystemInfo
	Attribute Details

	Addendum B: Route Reference
	Addendum C: Searching Reference
	Modifiers
	Limiting and Ordering Search Results

	Addendum D: Asynchronous Modes
	Addendum E: Response Codes

	Index

